采用树脂传递模塑工艺(RTM)研究了三种典型苎麻纤维织物结构(平纹、斜纹和缎纹)对树脂流动性的影响,并研究了三种苎麻纤维织物结构对其增强酚醛树脂复合材料的拉伸性能和层间剪切性能的影响.结果表明,苎麻纤维织物树脂渗透率主要受纤维屈曲和流道面积的影响.斜纹和缎纹苎麻织物的纤维屈曲较小且流道面积较大,其织物的树脂渗透率较大,同时,较小的纤维屈曲使其增强的复合材料拉伸性能也较优.然而,不同织物形式对苎麻纤维织物/树脂复合材料的层间性能影响不大.
参考文献
[1] | Li Y,Mai Y W,Ye L.Sisal fibre and its composites:A review of recent developments[J].Composite Science and Technology,2000,60:2037-2055. |
[2] | Netravali A N,Chabba S.Composites get greener[J].Materials Today,2003,6(4):22-29. |
[3] | Bogoeva-Gaceva G,Avella M,Malinconico M,Buzarovska A,Grozdanov A,Gentile G,Errico M E.Natural fiber ecocomposites[J].Polymer Composites,2007,28: 98-107. |
[4] | 赵稼祥.世界碳纤维现状与进展[J].玻璃钢/复合材料,2003(2):41-44.Zhao Jiaxiang.Present status and progress of carbon fiber in the world[J].Fiber Reinforced Plastic and Composites Material,2003(2):41-44. |
[5] | 李岩,罗 业.天然纤维增强复合材料力学性能及其应用[J].固体力学学报,2010,31(6):36-38.Li Yan,Luo Ye.Mechanical properties and applications of natural fiber reinforced composites[J].Chinese Journal of Solid Mechanics,2010,31(6):36-38. |
[6] | 田宏伟,郭伟国.平纹机织玻璃纤维增强复合材料面内压缩力学行为及破坏机制[J].复合材料学报,2010,27(2):133-139.Tian Hongwei,Guo Weiguo.In-plane compressive mechanics behavior and failure mechanism for SW200/LWR-2 glasswoven composite[J].Acta Materiae Compositae Sinica,2010,27(2):133-139. |
[7] | 简抗抗,张佐光,顾轶卓,等.不同纤维堆积状态下饱和渗透率实验研究[J].复合材料学报,2006,23(1):31-36.Jian Kangkang,Zhang Zuoguang,Gu Yizhuo,et al.Experimental research of saturated permeability with different fiber stacking states[J].Acta Materiae Compositae Sinica,2006,23(1):31-36. |
[8] | 陈萍,李宏运,陈祥宝.铺层方式对织物渗透率的影响[J].复合材料学报,2001,18(1):30-33.Chen Ping,Li Hongyun,Chen Xiangbao.Effect of layers on permeability[J].Acta Materiae Compositae Sinica,2001,18(1):30-33. |
[9] | 何海东,贾玉玺,丁妍羽,等.无弯曲纤维织物面内渗透率的结构相关性[J].复合材料学报,2011,28(5):70-76.He Haidong,Jia Yuxi,Ding Yanyu,et al.Structurerelationship of the in-plane permeability of non-crimped fabrics[J].Acta Materiae Compositae Sinica,2011,28(5):70-76. |
[10] | Endruweit A,McGregor P,Long A C,Johnson M S.Influence of the fabric architecture on the variations in experimentally determined in-plane permeability values[J].Composites Science and Technology,2006,66:1778-1792. |
[11] | Loix F,Badel P,Orgéas L,el at.Woven fabric permeability:From textile deformation to fluid flow mesoscale simulations[J].Composites Science and Technology,2008,68:1624-1630. |
[12] | Peled A,Bentur A.Fabric structure and its reinforcing efficiency in textile reinforced cement composites[J].Composites:Part A,2003,34:107-118. |
[13] | Angioni S L,Meo M,Foreman A.A comparison of homogenization methods for 2-D woven composites[J].Composites:Part B,2011,42:181-189. |
[14] | Ishikawa T,Chou T.Elastic behavior of woven hybrid composites[J].Journal of Composite Materials,1982,16:2-6. |
[15] | 燕瑛.织物细观结构参数对编织复合材料弹性性能的影响[J].航空学报,1997,18(6):666-669.Yan Ying.Effects of fabric micro-structural parameters on elastic properties of woven fabric reinforced composites[J].Acta Aeronautica et Astronautica Sinica,1997,18(6):666-669. |
[16] | Loix F,Badel P,Orgéas L,Geindreau C,Boisse P.Woven fabric permeability:From textile deformation to fluid flow mesoscale simulations[J].Composites Science and Technology,2008,68:1624-1630. |
[17] | Lekakou C,Edwards S,Bell G,Amico S C.Computer modeling for the prediction of the in-plane permeability of non-crimp stitch bonded fabrics[J].Composites..Part A,2006,37:820-825. |
[18] | Pearce N R L,Summerscales J,Guild F J.Improving the resin transfer molding process for fabric-reinforced composites by modification of the fabric architecture[J].Composites:Part A,2000,31:1433-1441. |
[19] | 燕瑛.纺织结构复合材料强度性能的研究[J].北京航空航天大学学报,1996,22(6):707-711.Yan Ying.Study on the strength of textile structural composites[J].Journal of Beijing University of Aeronautics and Astronautics,1996,22(6):707-711. |
[20] | 燕瑛,楼畅.机织复合材料力学性能的细观分析与实验研究[J].复合材料学报,2001,18(2):109-113.Yan Ying,Lou Chang.Micromechanical analysis and experimental evaluation of the property of woven composite materials[J].Acta Materiae Compositae Sinica,2001,18(2):109-113. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%