研究了TiNbZr生物β钛合金的冷加工性能.TiNbZr合金由真空自耗电弧炉熔炼,实验过程中采用冷拉变形方式.在冷拉过程中,合金表现出良好的冷加工性能.当冷变形率在20%左右时,出现变形孪晶,使得合金强度有大幅度提高.在随后的冷变形过程中,位错滑移为主要的塑性变形方式.当冷变形率为80%时,抗拉强度达到1170 MPa,延伸率也大于10%.在该冷变形率下,晶粒得到显著细化,晶粒尺寸在20nm到50nm之间.
The cold workability of solution-treated TiNbZr biomedical β titanium alloy was investigated. TiNbZr alloy was fabricated by vacuum consumable arc melting furnace. Cold drawing was carried out for further deformation of the studied alloy. During cold drawing, the alloy exhibited excellent workability. Deformation twins appeared when the reduction of cold deformation was around 20%. Dislocations slipping contributed much to plastic deformation in further drawing. The ultimate tensile strength will go up to 1170 MPa and the elongation is larger than 10% when the reduction reaches 80%. Small grains ranging from 20 nm to 50 nm can be obtained when the reduction is 80%.
参考文献
[1] | Long M;Rack HJ .Titanium alloys in total joint replacement--a materials science perspective.[J].Biomaterials,1998(18):1621-1639. |
[2] | Nagai Y;Toyama T;Tang Z et al.[J].Scripta Materialia,2006,54:1751. |
[3] | Kim H Y;Sasaki T;Okutsu K et al.[J].Acta Materialia,2006,54:423. |
[4] | Kuroda D.;Morinaga M.;Kato Y.;Yashiro T.;Niinomi M. .Design and mechanical properties of new beta type titanium alloys for implant materials[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1998(1/2):244-249. |
[5] | Miyazaki S;Kim H Y;Hosoda H .[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2006,438-440:18. |
[6] | Yang G J;Zhang T .[J].Journal of Alloys and Compounds,2005,392:291. |
[7] | Ho WF;Ju CP;Lin JH .Structure and properties of cast binary Ti-Mo alloys.[J].Biomaterials,1999(22):2115-2122. |
[8] | Kim JI;Kim HY;Inamura T;Hosoda H;Miyazaki S .Shape memory characteristics of Ti-22Nb-(2-8)Zr(at.%) biomedical alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(1/2):334-339. |
[9] | Hanada S;Yoshio T;Nishimura T.[A].Paris:Societe Francaise de Metallurgie,1988:105. |
[10] | Hanada S;Izumi O .[J].Metallurgical and Materials Transactions,1987,2:265. |
[11] | Kiritani M. .Dislocation-free plastic deformation under high stress[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):1-7. |
[12] | Yasunaga K.;Iseki M.;Kiritani M. .Dislocation structures introduced by high-speed deformation in bcc metals[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):76-80. |
[13] | Saito T.;Furuta T.;Hwang JH.;Kuramoto S.;Nishino K.;Suzuki N.;Chen R.;Yamada A.;Ito K.;Seno Y.;Nonaka T.;Ikehata H.;Nagasako N. Iwamoto C.;Ikuhara Y.;Sakuma T. .Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism[J].Science,2003(5618):464-467. |
[14] | Gutkin M Y;Ishizaki T;Kuramoto S et al.[J].Acta Materialia,2006,54:2489. |
[15] | Yang Y;Li G P;Cheng G M et al.[J].Scripta Materialia,2008,58:9. |
[16] | Abdel-Hady M;Hinoshita K;Morinaga M .[J].Scripta Materialia,2006,55:477. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%