欢迎登录材料期刊网

材料期刊网

高级检索

采用新型电火花沉积设备,将亚微米WC-4Co陶瓷硬质合金材料沉积在铸钢材料上,制备电火花沉积合金涂层,利用SEM和XRD等技术研究沉积层与基体间的界面行为,分析沉积层的表面润湿性、物相形成机理、微观组织结构、界面元素分布、界面结合机理和显微硬度变化等。结果表明:电火花沉积技术可以在金属基体表面制造出微纳米非晶高熔点强化层。铸钢表面沉积层主要由Fe3W3C、Co3W3C、Si2W和Fe2C 等相组成;沉积层与基体呈冶金结合,过渡层中出现一些柱状晶和等轴晶的组织结构,沉积层中细小的Fe2C和Si2W等硬质相颗粒弥散分布于Fe 3 W 3 C和Co 3 W 3 C沉积层上。沉积层的厚度大于20μm,沉积层的平均显微硬度为1803.2 HV,细小弥散分布的硬质相是沉积层硬度提高的主要因素。

Submicron WC-4Co cemented carbide material was deposited on the surface of cast steel by electro-spark deposition (ESD), the electro-spark deposition coating was prepared. The behavior of interface between the coating and the substrate was studied by SEM and XRD. The surface wettability, the forming mechanism of phase, microstructure, element distribution of deposition, bonding mechanism of interface and microhardness of the coating were investigated. The results show that micro/nano and amorphous coating with high melting-point is produced on the surface of cast steel by ESD. The coating consists of Fe 3 W 3 C, Co 3 W 3 C,Si 2 W and Fe 2 C phases. The coating is well metallurgical bonded with the cast steel roll substrate. The microstructure of the transition layer is a structure of fine columnar crystals and equiaxed crystals. The extra-fine structure hard Si2W and Fe2C phases distribute dispersedly in Fe3W3C and Co3W3C deposition. The coating is usually more than 20 μm thick. The average microhardness of the coating is 1803. 2 HV. These fine and dispersed hard phases can greatly improve the hardness of coating.

参考文献

[1] WANG Jiansheng,MENG Huimin,YU Hongying,FAN Zishuan,SUN Dongbai.Surface hardening of Fe-based alloy powders by Nd: YAG laser cladding followed by electrospark deposition with WC-Co cemented carbide[J].稀有金属(英文版),2010(04):380-384.
[2] Naiming Lin;Maolin Li;Jiaojuan Zou;Xiaoguang Wang;Bin Tang .Study on Fabrication and Corrosion Resistance of Ni-Based Alloy Coating on P110 Steel by Electro Spark Deposition[J].Journal of Materials Engineering and Performance,2013(5):1365-1370.
[3] 罗成,董仕节,熊翔.电火花振动沉积TiC功能涂层的显微组织与性能[J].材料热处理学报,2008(02):123-127.
[4] Jian-sheng Wang,Hui-min Meng,Hong-ying Yu,Zi-shuan Fan,Dong-bai Sun.Characterization and wear behavior of WC-0.8Co coating on cast steel rolls by electro-spark deposition[J].矿物冶金与材料学报,2009(06):707-713.
[5] WANG Mao-cai,WANG Wei-fu,XIE Yu-jiang,ZHANG Jie.Electro-spark epitaxial deposition of NiCoCrAlYTa alloy on directionally solidified nickel-based superalloy[J].中国有色金属学报(英文版),2010(05):795-802.
[6] 王建升,郭鹏,严大考.铸钢0Cr13Ni5Mo表面WC-8Co电火花沉积层的特性研究[J].水力发电学报,2013(05):256-260.
[7] Ribalko AV.;Sahin O. .The use of bipolar current pulses in electrospark alloying of metal surfaces[J].Surface & Coatings Technology,2003(2/3):129-135.
[8] WANG Jiansheng,MENG Huimin,YU Hongying,FAN Zishuan,SUN Dongbai.Wear characteristics of spheroidal graphite roll WC-8Co coating produced by electro-spark deposition[J].稀有金属(英文版),2010(02):174-179.
[9] Tang Chang-bin;Liu Dao-xin;Wang Zhan;Gao Yang .Electro-spark alloying using graphite electrode on titanium alloy surface for biomedical applications[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2011(15):6364-6371.
[10] A. A. Burkov;S. A. Pyachin .Investigation of WC-Co Electrospark Coatings with Various Carbon Contents[J].Journal of Materials Engineering and Performance,2014(6):2034-2042.
[11] I. A. Podchernyaeva;A. D. Panasyuk;D. V. Yurechko .HIGH-ENERGY ELECTROSPARK SURFACE STRENGTHENING OF STEELS WITH COMPOSITE CERAMICS[J].Powder Metallurgy and Metal Ceramics,2014(11/12):656-662.
[12] KONOVAL V P;UMANSHII O P;PANASYUK A D;LUKYANCHUK O F .Effect of the chemical composition of electrode materials and deposition parameters on the properties of electrospark-deposited coatings. I. Mass transfer rate and coating composition[J].Powder Metallurgy & Metal Ceramics,2014,53(01):31-39.
[13] Yu. G. Tkachenko;D. Z. Yurchenko;V. F. Britun .STRUCTURE AND PROPERTIES OF WEAR-RESISTANT SPARK-DEPOSITED COATINGS PRODUCED WITH A TITANIUM CARBIDE ALLOY ANODE[J].Powder Metallurgy and Metal Ceramics,2013(5/6):306-313.
[14] 王要利,于华,石红信,邱然峰,张柯柯.40Cr钢表面电火花沉积WC的界面行为[J].材料热处理学报,2013(08):173-176.
[15] 徐光晨,陈翌庆,Alan LUO,Anil.K.SACHDEV.铝合金表面处理对AM60/A390液固扩散连接界面组织及性能的影响[J].中国有色金属学报,2014(04):855-862.
[16] 罗成,熊翔,董仕节.电火花沉积法在铜电极表面制备TiB2/Ni涂层[J].中国有色金属学报(英文版),2011(02):317-321.
[17] 张瑞珠,郭鹏,王建升,严大考,李静瑞.铸钢0Cr13Ni5Mo表面电火花沉积YG8涂层的组织和性能[J].中国有色金属学报,2012(12):3366-3371.
[18] 乔生儒,韩栋,李玫.钢铁表面电火花淬火组织超细化及机理[J].机械工程材料,2004(08):7-9.
[19] MECEKOV I I;GERIKEN D S;MAZIANKO B F .The problem of mass migration of metal in mechanical accelerator under the conditions of pulsed discharge (in Russia)[J].Metal Physics and New Technology,1996,18(04):52-53.
[20] J.A. Picas;Y. Xiong;M. Punset .Microstructure and wear resistance of WC-Co by three consolidation processing techniques[J].International Journal of Refractory Metals & Hard Materials,2009(2):344-349.
[21] 韩春 .电火花沉积WC-12Co涂层界面研究及温度场应力场模拟[D].哈尔滨工业大学,2013.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%