欢迎登录材料期刊网

材料期刊网

高级检索

石墨烯、柠檬酸和硅纳米颗粒的乙醇混合物经超声分散、乙醇挥发和热处理(800℃1 h)制备出炭涂层硅/石墨烯(Si@ C/ G)纳米复合材料。透射电镜表明,Si 纳米颗粒的表面形成了一层厚度约为2 nm 的均匀炭涂层,石墨烯片层支撑着 Si@ C 纳米粒子,且两者具有较强的相互作用。作为锂离子电池负极材料,Si@ C/ G 电极具有较高的库仑效率,在500 mA·g-1的电流密度下,100卷循环后比容量为1431 mAh·g-1,表现出优越的循环稳定性。 Si@ C/ G 优异的电化学性能归因于石墨烯片层的高导热率、高导电率和优良的机械柔韧性。

A carbon-coated Si/ graphene (Si@ C/ G) nanocomposite was prepared by dispersing a mixture containing graphene, citric acid, and Si nanoparticles in ethanol, followed by drying and carbonization at 800 ℃ for 1 h. Transmission electron microsco-py revealed that a carbon layer with a uniform thickness of ca. 2 nm was formed on the surface of the Si nanoparticles. The Si@ C nanoparticles were supported by graphene sheets with an strong interaction between them. However, the carbon layer on the Si@ C nanoparticles without the graphene addition was not uniform. This can be ascribed to the high thermal conductivity of graphene that ensures a uniform temperature distribution on the surface of the Si nanoparticles. As an anode material for lithium ion batteries, the Si@ C/ G electrode exhibits a high initial coulombic efficiency of 82. 7% and an excellent cycling stability with a capacity of 1 431 mAh·g-1 after 100 cycles at a current density of 500 mA·g-1 . Such excellent electrochemical performance is attributed to the high electrical conductivity and superior flexibility of graphene.

参考文献

[1] Boukamp B A;Lesh G C;Huggins R A .All-solid lithium elec-trodes with mixed-conductor matrix[J].Journal of the Electrochemical Society,1981,128(04):725-729.
[2] P.Poizot;S.Laruelle;S.Grugeon .Searching for new anode materials for the Li-ion technology: time to deviate from the usual path[J].Journal of Power Sources,2001(0):235-239.
[3] Uday Kasavajjula;Chunsheng Wang;A. John Appleby .Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells[J].Journal of Power Sources,2007(2):1003-1039.
[4] Robert A. Huggins .Lithium alloy negative electrodes[J].Journal of Power Sources,1999(0):13-19.
[5] See-How Ng;Jiazhao Wang;David Wexler;Konstantin Konstantinov;Zai-Ping Guo;Hua-Kun Liu .Highly Reversible Lithium Storage in Spheroidal Carbon-Coated Silicon Nanocomposites as Anodes for Lithium-Ion Batteries[J].Angewandte Chemie,2006(41):6896-6899.
[6] Yong-Sheng Hu;Rezan Demir-Cakan;Maria-Magdalena Titirici .Superior Storage Performance of a Si@SiO_x/C Nanocomposite as Anode Material for Lithium-Ion Batteries[J].Angewandte Chemie,2008(9):1645-1649.
[7] Yoon Hwa;Won-Sik Kim;Seong-Hyeon Hong;Hun-Joon Sohn.High capacity and rate capability of core-shell structured nano-Si/C anode for Li-ion batteries[J].Electrochimica Acta,2012:201-205.
[8] Hongfa Xiang;Kai Zhang;Ge Ji .Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability[J].Carbon: An International Journal Sponsored by the American Carbon Society,2011(5):1787-1796.
[9] Lee, JK;Smith, KB;Hayner, CM;Kung, HH .Silicon nanoparticles-graphene paper composites for Li ion battery anodes[J].Chemical communications,2010(12):2025-2027.
[10] Zhou, X.;Yin, Y.-X.;Wan, L.-J.;Guo, Y.-G. .Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries[J].Chemical communications,2012(16):2198-2200.
[11] Zhao X;Hayner C M;Kung M C et al.In-plane vacancy-ena-bled high-power Si-graphene composite electrode for lithium-ion batteries[J].Adv Energy Mater,2011,1(06):1079-1084.
[12] Zhou X S;Yin Y X;Wan L J et al.Self-assembled nanocom-posite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries[J].Adv Energy Mater,2012,2(09):1086-1090.
[13] Wang, J.-Z.;Zhong, C.;Chou, S.-L.;Liu, H.-K. .Flexible free-standing graphene-silicon composite film for lithium-ion batteries[J].Electrochemistry communications,2010(11):1467-1470.
[14] Zhou X S;Cao A M;Wan L J et al.Spin-coated silicon nan-oparticle/graphene electrode as a binder-free anode for high-per-formance lithium-ion batteries[J].Nano Res,2012,5(12):845-853.
[15] Min Zhou;Tingwei Cai;Fan Pu .Graphene/Carbon-Coated Si Nanoparticle Hybrids as High-Performance Anode Materials for Li-Ion Batteries[J].ACS applied materials & interfaces,2013(8):3449-3455.
[16] Ping Liu;Haoqing Wu .Construction and destruction of passivating layer on Li_xC_6 in organic electrolytes: an impedance study[J].Journal of Power Sources,1995(1):81-85.
[17] Obrovac MN;Krause LJ .Reversible cycling of crystalline silicon powder[J].Journal of the Electrochemical Society,2007(2):A103-A108.
[18] Cui, LF;Yang, Y;Hsu, CM;Cui, Y .Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries[J].Nano letters,2009(9):3370-3374.
[19] Cui, L.-F.;Hu, L.;Choi, J.W.;Cui, Y. .Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries[J].ACS nano,2010(7):3671-3678.
[20] Wang, W.;Kumta, P.N. .Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes[J].ACS nano,2010(4):2233-2241.
[21] Zhu, Y.;Liu, W.;Zhang, X.;He, J.;Chen, J.;Wang, Y.;Cao, T. .Directing silicon-graphene self-assembly as a core/shell anode for high-performance lithium-ion batteries[J].Langmuir: The ACS Journal of Surfaces and Colloids,2013(2):744-749.
[22] Kang YM;Lee SM;Kim SJ;Jeong GJ;Sung MS;Choi WU;Kim SS .Phase transitions explanatory of the electrochemical degradation mechanism of Si based materials[J].Electrochemistry communications,2007(5):959-964.
[23] Li J;Dahn JR .An in situ X-ray diffraction study of the reaction of Li with crystalline Si[J].Journal of the Electrochemical Society,2007(3):A156-A161.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%