采用1∶1的水模型研究了5种不同底孔直径(16~28mm)的三孔水口下漏斗型薄板坯结晶器内的流场、液面特征和卷渣行为。结果表明:在常规工艺参数下,5种三孔水口下结晶器内钢液的流场都是典型的“双辊流”,且流场稳定;在5种三孔水口下结晶器液面波动都较平稳,且波动范围都在±(3~5)mm之间。5种不同水口下结晶器液面主要发生剪切卷渣,漩涡卷渣很少发生。试验得知:在水口浸入深度280mm,拉速为5m/min时,剪切卷渣发生的钢液临界表面速度是0.32m/s,与文献报道的模型计算值较吻合。在水口浸入深度280mm、拉速为5m/min的条件下,适合薄板坯连铸的最佳的三孔水口的底孔直径为22mm。
A full-scale funnel-shaped thin slab water model was built to investigate the fluid flow, meniscus fluctuation and slag entrapping behaviors when it were fed by five three-port submerged entry nozzles (SENs) with various diameters.The results shows that the fluid flow in the present mold is a typical steady “double roll flow” when using these five SENs. Furthermore, meniscus fluctuation is within ±(3-5) mm under regular casting parameters (SEN immersion depth and casting speed is 280mm and 5m/min,respectively). The mode of slag entrapping is mainly entrapment by shear flow, and the vortex-related entrapment hardly occurs. The critical meniscus velocity which cause slag entrapping is determined to be 0.32m/s under the regular casting parameters mentioned above, which agrees well with the calculated value. The optimal bottom-hole diameter for this three-port SEN which is suitable for thin slab casting is 22mm.
参考文献
[1] | |
[2] | 王新华. 采用薄板坯连铸生产高表面质量冷轧钢板的可行性分析[J]. 钢铁, 2004, 39(12): 18. [2] Honeyands T, Herbertson J. Flow dynamics in thin slab caster moulds[J]. Steel Research, 1995, 66 (7): 287.[3] 王现辉,王新华,张炯明,等. CSP结晶器内钢液面动态失稳现象的水模型实验[J]. 北京科技大学学报, 2009, 31(2): 234.[4] Kasai N, Iguchi M. Water-model Experiment on Melting Powder Trapping by Vortex in the Continuous Casting Mold[J]. ISIJ International, 2007, 47(7): 982.[5]蔡开科.连铸坯质量控制[M].北京:冶金工业出版社.2010:258.[6] Zhang L F, Yang S, Cai K, et al. Investigation of Fluid Flow and Steel Cleanliness in the Continuous Casting Strand[J]. Metallurgical and Material Transaction B, 2007, 38B(1): 63.[7] Kubota J, Okimoto K, Suzuki M, et al. Mechanism of Level Fluctuation and Mold Powder Catching in Slab Continuous Casting at High Speeds[C] , The Sixth International Iron and Steel Congress. 1990. Nagoya, Japan: 356.[8] Kubota J, Okimoto K, Shirayama A, et al. Menisucus flow control in the mold by travelling magnetic field for high speed slab caster[C].74th Steelmaking Conf. Proc., ISS, Warrendale, PA, 1991:233.[9] Imamura A, Kusano A, Moritama N. A Hidrodynamical Analysis of the Molten Steel Flow in the Continuous Casting Mold[J]. Tetsu-to-Hagane, 1992, 78(3): 439.[10] Teshima T, Kubota J, Suzuki M, et al. Influence of Casting Conditions on Molten Steel Flow in Continuous Casting Mold at High Speed Casting of Slabs[J]. Tetsu-to-Hagane , 1993,79(5): 576.[11] 雷洪, 朱苗勇, 赫冀成.连铸结晶器内卷渣过程的数学模型[J]. 金属学报, 2000,36(10): 1113.[12] Torres-Alonso E, Morales R D, García-Hernández S, et al. Cyclic Turbulent Instabilities in a Thin Slab Mold. Part I: Physical Model[J]. Metallurgical and Material Transaction B, 2010, 41B (3): 583.[13] Torres-Alonso E, Morales R D, García-Hernández S, et al. Oscillating jet flows in a thin slab mold and their influence on meniscus stability[J]. Steel Research International, 2008, 79(7): 553.[14] 王现辉,王新华,张炯明,等.CSP结晶器内卷渣的瞬态特征[J]. 北京科技大学学报, 2009,31(6): 764.[15] Thomas B G. Modeling of the continuous casting of steel—past, present, and future[J]. Metallurgical and Material Transaction B, 2002, 33B (6): 795. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%