{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"通过分析氧气铜熔炼渣及铜锍,结合冶金过程原理,研究渣-铜锍间多组元含量的映射关系及熔炼过程优化。结果表明:铜锍中Cu、S、Fe含量之间呈现出较强的相关性;渣中Cu、SiO 2、Fe含量及渣型铁硅比(SiO )(Fe)2m /m 相互之间也呈现出一定的相关性;铜锍中Cu、Fe、S含量对渣中S含量的映射关系较为明显;基于铜锍中S、Cu含量和渣中S含量,或基于渣型铁硅比(SiO )(Fe)2m /m 和铜锍品位都可对渣中Cu含量进行预测,后者的准确度较高,说明铜锍品位和渣型对渣中Cu含量有较大影响。","authors":[{"authorName":"郭学益","id":"451a7765-6e41-411c-9fba-037153879fb1","originalAuthorName":"郭学益"},{"authorName":"王亲猛","id":"bf84e133-0cdd-4c8e-9291-c6d904a4fc1d","originalAuthorName":"王亲猛"},{"authorName":"田庆华","id":"e590fbd0-4039-44c9-ad69-ff5f097ac4b2","originalAuthorName":"田庆华"},{"authorName":"ZHAO Bao-jun","id":"bd39493f-e17c-4962-9338-9e52042605d6","originalAuthorName":"ZHAO Bao-jun"}],"doi":"","fpage":"689","id":"b94c0a88-fbc6-461e-8e15-d79a5893bc87","issue":"3","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"213a5f41-9c3c-4610-94f6-d07349664939","keyword":"铜冶金","originalKeyword":"铜冶金"},{"id":"fd6b7525-2fb9-4903-ad62-b5c3b44be288","keyword":"氧气","originalKeyword":"氧气底吹"},{"id":"89cd863e-2332-41fd-948b-30fec81efa35","keyword":"性能分析","originalKeyword":"性能分析"},{"id":"70ba8e86-27f4-4222-9509-6c630bb7c8ba","keyword":"过程优化","originalKeyword":"过程优化"}],"language":"zh","publisherId":"zgysjsxb201603026","title":"氧气铜熔炼工艺分析及过程优化","volume":"26","year":"2016"},{"abstractinfo":"通过分析氧气吹炼铜过程产生的高品位铜锍中Cu、Fe、S、SiO2等组元含量变化趋势,结合冶金过程原理,研究上述各组元造锍行为及组元含量间的映射关系.结果表明:Cu、Fe、S、SiO2等组元在铜锍中的造锍行为具有相互关联性,其中Cu、Fe、S相互之间的关联性较强,Cu-Fe、Cu-S、Fe-S含量之间线性相关系数R2分别为0.96、0.89、0.79,但SiO2与Cu、Fe、S之间的关联性较弱.构造了Cu、Fe、S组元含量复合映射模型,该复合模型预测精确度高于单因素模型的预测精确度,可为生产过程中高品位铜锍多组元含量的精细调控,及熔炼-吹炼过程热量精确分配提供指导.","authors":[{"authorName":"王亲猛","id":"474a3e74-787a-4172-b75c-fbc8a84ce802","originalAuthorName":"王亲猛"},{"authorName":"郭学益","id":"fb103245-5af3-4127-9f64-4bc508c0bae4","originalAuthorName":"郭学益"},{"authorName":"廖立乐","id":"08f55350-e040-4669-9f69-bf214ca78972","originalAuthorName":"廖立乐"},{"authorName":"田庆华","id":"4dd66a43-13df-441f-ac94-26381378bd5f","originalAuthorName":"田庆华"},{"authorName":"张永柱","id":"61590965-decc-4fb1-af3c-f1ad7b504ddf","originalAuthorName":"张永柱"}],"doi":"","fpage":"188","id":"5477c742-ada2-4219-9039-1d03eba65d2b","issue":"1","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"8f9916f2-f3bf-493a-8cc5-19a008e46484","keyword":"氧气","originalKeyword":"氧气底吹"},{"id":"29cf8845-6dd7-4f82-9b64-d35b0a1f9e1a","keyword":"炼铜","originalKeyword":"炼铜"},{"id":"7bf46f74-b9d1-441d-b669-103952c4e177","keyword":"铜锍","originalKeyword":"铜锍"},{"id":"06171bf0-ba3b-413e-bdd8-fab68c50ec77","keyword":"预测模型","originalKeyword":"预测模型"}],"language":"zh","publisherId":"zgysjsxb201601022","title":"氧气吹炼铜多组元造锍行为及组元含量的映射关系","volume":"26","year":"2016"},{"abstractinfo":"氧气炉是一种类似诺兰达炉的卧式旋转反应器,但富氧空气从炉体底部喷入熔体.通过分析熔炼特性,提出了氧气吹炼铜机理.在机理模型中,炉内由上到下分成7个功能层,分别是烟气层、矿料分解过渡层、渣层、造渣过渡层、造锍过渡层、弱氧化层和强氧化层;沿轴线方向分成3个功能区,分别是反应区、分离过渡区、液相澄清区.模型中所有的层和区分别具有不同的作用.氧气熔炼过程处于非稳态的近似多相平衡状态,且炉内不同空间位点的氧势、硫势呈梯度变化;通过合理控制不同层、区的氧势、硫势,可进一步提高氧气炉的熔炼能力.","authors":[{"authorName":"王亲猛","id":"cdf8f53b-01a3-4352-8655-4fecbc198c28","originalAuthorName":"王亲猛"},{"authorName":"郭学益","id":"435e3dc0-a1d4-4818-9670-bb6520647eae","originalAuthorName":"郭学益"},{"authorName":"田庆华","id":"148df3b4-0416-4f68-8e35-4b7b1bbdb660","originalAuthorName":"田庆华"}],"doi":"10.1016/S1003-6326(17)60110-9","fpage":"946","id":"01436900-4593-4214-a11f-a0628d69e643","issue":"4","journal":{"abbrevTitle":"ZGYSJSXBEN","coverImgSrc":"journal/img/cover/ZGYSJSXBEN.jpg","id":"757390d2-7d95-4517-96f1-e467ce1bff63","issnPpub":"1003-6326","publisherId":"ZGYSJSXBEN","title":"中国有色金属学报(英文版)"},"keywords":[{"id":"f2e448f9-e279-4b8d-b2bf-1a0682f757b1","keyword":"氧气吹炼铜","originalKeyword":"氧气底吹炼铜"},{"id":"6c057c36-d2b0-46d8-9ac9-ed8ceac9847d","keyword":"机理","originalKeyword":"机理"},{"id":"5e4567a1-d288-4ddd-ab4a-e2d75f97cf83","keyword":"多相平衡","originalKeyword":"多相平衡"},{"id":"a65138c4-ca52-49bf-9f93-290c0e65bdef","keyword":"氧势","originalKeyword":"氧势"},{"id":"610e392a-2886-4e11-a479-e7e586c7fa93","keyword":"硫势","originalKeyword":"硫势"},{"id":"e60c8970-2640-4159-b756-42f25968135d","keyword":"SKS工艺","originalKeyword":"SKS工艺"}],"language":"zh","publisherId":"zgysjsxb-e201704027","title":"氧气吹炼铜机理","volume":"27","year":"2017"},{"abstractinfo":"为研究钢包孔布置对钢液混匀时间及液面波动的影响,确定钢包最优工艺,以某厂210 t钢包为原型,根据相似原理建立钢包物理模型,模拟钢包氩工艺。通过研究不同孔位置与角度对混匀时间和液面波动的影响,确定钢包最优工艺。结果表明,最优位置为孔位于距钢包底部圆心距离为0.60R/0.60R,夹角为100°。孔在0.40R的位置,两气柱会相互影响;孔在0.60R的位置是较理想的位置;孔在0.79R的位置,气流对包壁冲刷严重。","authors":[{"authorName":"董鹏莉","id":"d64b5989-cb6e-49db-8fac-e6b0dd821dd1","originalAuthorName":"董鹏莉"}],"doi":"10.13228/j.boyuan.issn0449-749x.20150546","fpage":"41","id":"0d3ef894-ded3-4482-85d2-4add7e683a0c","issue":"7","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"dd5488c7-8853-4e51-9894-6c2bf15709ca","keyword":"钢包","originalKeyword":"钢包"},{"id":"9dcf0ebb-b007-4bd1-a080-de29991bf67d","keyword":"氩","originalKeyword":"底吹氩"},{"id":"23a4e963-adc1-43b2-9017-4120bc1f0b1e","keyword":"混匀时间","originalKeyword":"混匀时间"},{"id":"d073ffcd-48c6-44ba-81b5-8b775bd9229d","keyword":"物理模拟","originalKeyword":"物理模拟"}],"language":"zh","publisherId":"gt201607007","title":"210 t钢包工艺优化物理模拟","volume":"51","year":"2016"},{"abstractinfo":"在1:6物理模型上,通过水模实验对复转炉喷粉时熔池搅拌情况进行了研究.结果表明:喷粉对熔池搅拌有明显的促进作用.喷粉条件下,均混时间随顶吹气体流量的增加存在最小值,最佳顶吹气体流量为117.0 m3/h,增加吹气体流量对降低均混时间有利.在本实验范围内最佳顶吹流量为117.0 m3/h、最佳流量为2.36 m3/h.","authors":[{"authorName":"王学斌","id":"469074fe-b3e4-4795-9e6f-fe00270a7ddd","originalAuthorName":"王学斌"},{"authorName":"冯明霞","id":"2ad651e1-5640-4b63-a52e-c724d55934c9","originalAuthorName":"冯明霞"},{"authorName":"刘崇林","id":"14ce668f-4ac2-41d1-ba82-e50a300dc9e6","originalAuthorName":"刘崇林"},{"authorName":"邹宗树","id":"e1793516-f866-4461-9c1e-8b5f6a74cacb","originalAuthorName":"邹宗树"}],"doi":"10.3969/j.issn.1671-6620.2009.01.003","fpage":"12","id":"c1e09472-f525-4625-abef-eb78de6767ec","issue":"1","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"092ee325-76f6-4e5f-9319-84a34d71a950","keyword":"复转炉","originalKeyword":"复吹转炉"},{"id":"3885e738-4c31-47d0-82e8-f8bd4e362b52","keyword":"喷粉","originalKeyword":"喷粉"},{"id":"c5c1c23e-7747-47dc-8d44-6e141782c152","keyword":"","originalKeyword":"底吹"},{"id":"0cba4f32-bfc4-4c90-aa35-ce72f1d8d8a1","keyword":"水模型","originalKeyword":"水模型"},{"id":"dd936dea-3c2c-4eeb-a4dc-196920083ba0","keyword":"均混时间","originalKeyword":"均混时间"}],"language":"zh","publisherId":"clyyjxb200901003","title":"复转炉喷粉实验研究","volume":"8","year":"2009"},{"abstractinfo":"钢包氩是一种操作简单、精炼效果明显的炉外精炼装置.新兴铸管炼钢厂为改善钢水精炼效果,采用钢包氩代替顶吹,即用狭缝式透气砖代替氩棒.生产实践证明,氩能改善和提高钢水的内在质量,降低钢中夹杂物含量和气体含量,氩后钢质的力学性能符合国家标准.","authors":[{"authorName":"范英俊","id":"afc04eb5-10bd-449a-b20a-f858747c8fa9","originalAuthorName":"范英俊"},{"authorName":"杨明生","id":"ce1b4eed-c7d3-48f6-a538-4bf6b9fcf6d4","originalAuthorName":"杨明生"}],"doi":"","fpage":"20","id":"44e10b67-8105-4b3c-9b7a-d0c78008d51a","issue":"4","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"f074cea5-aee7-4757-9f86-460bef20c8df","keyword":"转炉","originalKeyword":"转炉"},{"id":"3c6754b3-cb38-43de-bc00-79425d140288","keyword":"钢包","originalKeyword":"钢包"},{"id":"90e4e34f-8eeb-46d8-b675-2505c167ec82","keyword":"氩","originalKeyword":"吹氩"}],"language":"zh","publisherId":"gt200104006","title":"钢包氩在转炉生产中的应用","volume":"36","year":"2001"},{"abstractinfo":"分析了影响钢包氩成功率的各种因素,提出了改进措施.实践证明:改进措施的实施使钢包氩成功率由90%提高到99%,满足了品种钢生产的需要.","authors":[{"authorName":"米源","id":"f2f439a6-ada0-4202-87ba-83e958a90168","originalAuthorName":"米源"}],"doi":"10.3969/j.issn.1001-1935.2007.04.014","fpage":"287","id":"283323c9-4e30-45a0-8dde-5c05e98e732d","issue":"4","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"40671938-d7a9-4211-ad46-946f1e5ca5ca","keyword":"钢包","originalKeyword":"钢包"},{"id":"0bf6442a-ffa2-45ba-ad3f-7c2e095bf25c","keyword":"透气砖","originalKeyword":"透气砖"},{"id":"9057fda6-f5c9-407a-ae64-428bf4d14553","keyword":"氩","originalKeyword":"底吹氩"}],"language":"zh","publisherId":"nhcl200704014","title":"钢包氩工艺技术改进","volume":"41","year":"2007"},{"abstractinfo":"概述了唐钢第一钢轧厂转炉顶工艺的情况,通过对转炉冶炼工艺的优化,炉渣成分的有效控制、模式的优化、溅渣护炉工艺的改进,解决了炉上涨与透气砖侵蚀的问题,提高了效果,改善了钢水质量.","authors":[{"authorName":"张大勇","id":"b3bd80d6-19bd-4098-bc62-b9608989fe91","originalAuthorName":"张大勇"},{"authorName":"张彩军","id":"c776bda3-d64f-4184-9294-aef5ffbbd76a","originalAuthorName":"张彩军"},{"authorName":"刘玉生","id":"962754ee-cff1-4014-b822-8bd7782be106","originalAuthorName":"刘玉生"}],"doi":"10.3969/j.issn.1000-6826.2007.04.003","fpage":"9","id":"f3a6aee9-34bc-447d-8ed5-5fbebb88e9b0","issue":"4","journal":{"abbrevTitle":"JSSJ","coverImgSrc":"journal/img/cover/3abe017a-2574-4821-8152-4ae974ef0471.jpg","id":"47","issnPpub":"1000-6826","publisherId":"JSSJ","title":"金属世界"},"keywords":[{"id":"6415a5e8-865b-4dbe-8787-b9645926e9ae","keyword":"转炉","originalKeyword":"转炉"},{"id":"aab3f661-1a32-4ca9-b990-f281ec0b06cc","keyword":"顶","originalKeyword":"顶底复吹"},{"id":"a9676db9-be0f-42ce-b78a-46f3b134a446","keyword":"透气砖","originalKeyword":"透气砖"},{"id":"43d152b1-9fd9-47b2-a24f-eb5f70995e31","keyword":"透气性","originalKeyword":"透气性"},{"id":"64ad18f2-8c3d-444f-81f3-092e49bf6ddb","keyword":"供气模式","originalKeyword":"供气模式"}],"language":"zh","publisherId":"jssj200704003","title":"150吨转炉顶工艺的实践","volume":"","year":"2007"},{"abstractinfo":"根据重庆钢铁股份公司复转炉生产过程中实际结构尺寸和改造设计的特点,设计制作了复转炉冷态模型.针对实际生产过程中转炉喷枪可能出现的异常堵塞情况,研究了喷枪正常、部分堵塞或全部堵塞等不同工况下,复转炉熔池内的搅拌混匀时间与供气强度的关系.","authors":[{"authorName":"周远华","id":"08752751-a355-44dc-afce-46fbbe2e914c","originalAuthorName":"周远华"},{"authorName":"温良英","id":"8ab4137e-eb4b-4e30-ab5d-c94c9d7e1b83","originalAuthorName":"温良英"},{"authorName":"李斌","id":"7e724a5c-3f1d-49e3-a8ae-2a88ea9e8465","originalAuthorName":"李斌"},{"authorName":"陈登福","id":"92b298b9-bf96-4687-b173-104e0ccdba49","originalAuthorName":"陈登福"}],"doi":"","fpage":"14","id":"33601fb4-92ad-45b6-ba0a-fae4e84342ae","issue":"5","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"e0d7be4e-9f5e-42bb-9fe2-8a749dab5620","keyword":"转炉","originalKeyword":"转炉"},{"id":"f0ddda26-3c01-4136-bdcb-f03295add8f8","keyword":"","originalKeyword":"底吹"},{"id":"9b74e63d-c12f-4584-9108-8afc1a9bacd8","keyword":"供气强度","originalKeyword":"供气强度"},{"id":"2d060e73-6c33-4efb-9eda-15a3c08fab57","keyword":"堵塞","originalKeyword":"堵塞"}],"language":"zh","publisherId":"gtyjxb200605004","title":"喷枪异常堵塞时复转炉的熔池搅拌","volume":"18","year":"2006"},{"abstractinfo":"根据整体及各区域的物理化学约束条件建立了氧气高炉工艺综合数学模型.通过模型的计算结果对能量在不同区域的利用情况进行了分析3得出结论如下:氧气高炉无煤气循环流程的一次能耗很高,燃料比在600 kg/tHM以上,并且无法实现高温区和固体炉料区之间的能量匹配.炉顶煤气循环后,可以实现能量在高温区和固体炉料区的同时平衡;在同时满足全炉热平衡和区域热平衡的条件下,氧气高炉炉身喷循环煤气流程的理论燃烧温度过高,而炉缸喷循环煤气流程的理论燃烧温度偏低;对于氧气高炉炉身、炉缸同时喷循环煤气流程,随着循环煤气量的增大,焦比升高,煤比降低,理论燃烧温度可以维持在合理的范围内.","authors":[{"authorName":"高攀","id":"67e3160b-81f2-490d-b1c7-9c1c926dcae3","originalAuthorName":"高攀"},{"authorName":"李强","id":"0e69022a-8987-48d8-8d37-f82b04e602d1","originalAuthorName":"李强"},{"authorName":"张作良","id":"c562e776-544e-49b8-a59c-eee10f072a08","originalAuthorName":"张作良"},{"authorName":"张伟","id":"96f9d670-10e6-4d97-a3e9-dd71f11134e3","originalAuthorName":"张伟"},{"authorName":"邹宗树","id":"aac7152e-1b08-49f4-af4a-19d5585d8551","originalAuthorName":"邹宗树"},{"authorName":"干勇","id":"f2583ea9-25be-4bd6-b10b-66890d8f289d","originalAuthorName":"干勇"}],"doi":"","fpage":"7","id":"4aff6219-f479-48a6-94d4-046900623c17","issue":"1","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"1e9f7591-4bf7-4268-80f6-2b0e19ce1b9b","keyword":"炼铁","originalKeyword":"炼铁"},{"id":"1ebafbd4-7cc8-4a29-b6a6-d6437aeefd7f","keyword":"氧气高炉","originalKeyword":"氧气高炉"},{"id":"5cb0e477-380b-4541-acee-41331ff31941","keyword":"物料平衡","originalKeyword":"物料平衡"},{"id":"14b01bb6-657d-4452-baf7-ed1cd83333ce","keyword":"热平衡","originalKeyword":"热平衡"},{"id":"064b3e41-001f-46c0-bb83-752c5d606596","keyword":"数学模型","originalKeyword":"数学模型"}],"language":"zh","publisherId":"clyyjxb201301003","title":"喷循环煤气氧气高炉的静态模型","volume":"12","year":"2013"}],"totalpage":292,"totalrecord":2913}