{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"根据结晶聚合物基纳米复合材料实验分析,将结晶聚合物基纳米复合材料内部结构分别用宏观、细观和纳观三个层次来描述.利用数学上的渐近均匀化理论,结合有限元方法,经二次纳观层次的均匀化和一次细观层次的均匀化,预测了聚合物基纳米复合材料的有效性能.并用FORTRAN语言编写了计算程序.具体分析了聚合物结晶度、聚合物结晶相的弹性模量、纳米颗粒的弹性模量和纳米颗粒的体积分数等参数对结晶聚合物基纳米复合材料有效性能的影响,得到了一些有意义的结论,对指导结晶聚合物基纳米复合材料的制备有一定的指导作用.","authors":[{"authorName":"谢桂兰","id":"bac8511d-db90-4a64-bb63-9dea0956c3c1","originalAuthorName":"谢桂兰"},{"authorName":"张平","id":"fca4f3f3-fe94-4cd1-bd32-8a1d6916299e","originalAuthorName":"张平"},{"authorName":"龚曙光","id":"7cac8bff-0271-44d7-82d4-9ed3438a6b89","originalAuthorName":"龚曙光"},{"authorName":"曹尉南","id":"dad9587e-24e6-41ed-9920-58bd5e5b5e2f","originalAuthorName":"曹尉南"},{"authorName":"安小军","id":"2cc43a33-3b6a-4071-a03a-709aca15167f","originalAuthorName":"安小军"}],"doi":"","fpage":"23","id":"89a7103a-4074-48dc-852d-338a1a1df65d","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"efe34b87-1e61-40df-afb4-9d515a884dd9","keyword":"纳米复合材料","originalKeyword":"纳米复合材料"},{"id":"b3485e21-7eac-4759-8c46-4ca555831c83","keyword":"结晶聚合物","originalKeyword":"结晶聚合物"},{"id":"932f014d-d297-4d07-8690-1f99a1b570d8","keyword":"渐近均匀化方法","originalKeyword":"渐近均匀化方法"},{"id":"85bf0022-eefe-4ce1-b309-a6476a7ee63e","keyword":"有限元分析","originalKeyword":"有限元分析"},{"id":"0257625c-4bfc-456c-827b-677233c4b474","keyword":"多层次结构","originalKeyword":"多层次结构"},{"id":"07a86b9a-9974-4771-8095-bd3dcebdab21","keyword":"有效性能","originalKeyword":"有效性能"}],"language":"zh","publisherId":"gfzclkxygc200504006","title":"结晶聚合物基纳米复合材料多层次结构及有效性能预测","volume":"21","year":"2005"},{"abstractinfo":"原位聚合法制备的尼龙6/纳米SiO2复合材料具有很好的综合力学性能.加入相当低的纳米颗粒体积分数,可使纳米复合材料性能明显提高,但在其体积分数超过某一较小的临界值后,继续增加纳米颗粒体积分数,不再有增强效果.这一实验发现与以往的细观力学预测不一致,一直没有合理的解释.本文从材料的微观结构特点出发,揭示了上述现象的微观物理机制,将结晶聚合物纳米复合材料内部结构分别用宏观、细观和纳观三个层次来描述.利用数学上的渐近均匀化理论,结合有限元方法,经四次纳观层次的均匀化和一次细观层次的均匀化,预测了聚合物纳米复合材料的有效性能,揭示了聚合物纳米复合材料有效模量随纳米颗粒体积分数增加出现先增大后减小的变化规律.","authors":[{"authorName":"谢桂兰","id":"6fa69bf9-be1f-4496-9511-4998907f0aed","originalAuthorName":"谢桂兰"},{"authorName":"张平","id":"46d7bf87-aea6-4b35-b02d-5e261fbaf7d9","originalAuthorName":"张平"},{"authorName":"龚曙光","id":"fe3947c3-863c-4973-883b-01cd37a06baf","originalAuthorName":"龚曙光"},{"authorName":"曹尉南","id":"f33ffd3f-fa12-4df2-b938-17f9e325db44","originalAuthorName":"曹尉南"},{"authorName":"安小军","id":"603d2ad0-8420-422a-bc22-9724cf482bc1","originalAuthorName":"安小军"}],"doi":"","fpage":"11","id":"000afc97-9b82-4eb2-a45c-53249ee94168","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"4b301084-183b-4e8e-a93b-02f8459bbea2","keyword":"纳米复合材料","originalKeyword":"纳米复合材料"},{"id":"100a6b50-28fe-4a98-a6e4-a703a4293b2c","keyword":"结晶聚合物","originalKeyword":"结晶聚合物"},{"id":"9842af5e-330d-46d4-88af-a495484b1626","keyword":"渐近均匀化方法","originalKeyword":"渐近均匀化方法"},{"id":"039da69f-db5c-4ac2-99c9-3fdedda00fe2","keyword":"有限元分析","originalKeyword":"有限元分析"},{"id":"4b647b6b-6649-4fab-95f5-08f6e27a7f49","keyword":"多层次结构","originalKeyword":"多层次结构"},{"id":"cdb76c4c-0b16-486d-8b51-47e404115c5b","keyword":"有效性能","originalKeyword":"有效性能"}],"language":"zh","publisherId":"gfzclkxygc200603003","title":"基于多层次结构的结晶聚合物纳米复合材料有效性能--体积分数和等效模量的关系研究","volume":"22","year":"2006"},{"abstractinfo":"合成了一类带硝基偶氮苯侧链的共聚聚氨酯,并用FT-IR、UV、DSC、WAXD和偏光显微镜等方法进行了表征.发现这类刚性侧链不通过间隔基直接连于主链上的共聚聚氨酯均表现为结晶聚合物,由于硝基和羰基均可与氨酯键上的氢形成强氢键以及刚性链段的结晶,使体系成为以氢键为物理交联点的结晶网络,这类共聚聚氨酯在通常有机溶剂中的溶解性很差.提出了一个假设模型对该类共聚聚氨酯的结晶行为进行解释.","authors":[{"authorName":"谌东中","id":"ef8c4c75-89ea-43dc-b6e8-4a03fe81bfdc","originalAuthorName":"谌东中"},{"authorName":"吴立芬","id":"f9dd881b-e394-4d06-bbb8-6f0a9e9896b0","originalAuthorName":"吴立芬"},{"authorName":"陈庆民","id":"7c664a75-5c94-4b97-8371-ca6aeb93e364","originalAuthorName":"陈庆民"},{"authorName":"余学海","id":"249e9b3a-b524-4944-afb0-760c004b9755","originalAuthorName":"余学海"}],"doi":"","fpage":"41","id":"a2d42b2a-270c-4fc2-b579-c12d38852607","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"9ba48215-439a-4e32-af3d-39a5bc64f4d7","keyword":"共聚聚氨酯","originalKeyword":"共聚聚氨酯"},{"id":"40f913b9-4a36-4edc-a205-bd3eb0c88792","keyword":"表征","originalKeyword":"表征"},{"id":"c63e5341-8e11-4359-8f70-4a93cad4458f","keyword":"结晶聚合物","originalKeyword":"结晶聚合物"},{"id":"740732d6-bc9c-4021-bba4-19bbb6865c79","keyword":"硝基偶氮苯","originalKeyword":"硝基偶氮苯"},{"id":"2275cfe9-da83-4379-bdb3-9ee3699891c7","keyword":"氢键","originalKeyword":"氢键"}],"language":"zh","publisherId":"gfzclkxygc199903012","title":"一类含硝基偶氮苯侧基的共聚聚氨酯的合成与表征","volume":"15","year":"1999"},{"abstractinfo":"运用等温DSC对结晶聚合物(PEG6000-MAH)增稠低压SMC体系进行扫描测试,确定了适用于该体系的自催化经验动力学模型的相关参数和动力学方程.用确定的固化度验证该模型,实验情况与理论结果吻合较好.依据凝胶化时体系黏度变化的特性,通过黏度的测定获得了体系在不同温度的凝胶时间,建立了凝胶化理论模型.固化动力学模型和凝胶化理论模型的建立为低压SMC压制工艺制度的确立提供了理论指导和依据.","authors":[{"authorName":"秦岩","id":"184467a7-1518-4314-b171-217ea5f87dac","originalAuthorName":"秦岩"},{"authorName":"刘海华","id":"16c7346b-3c47-4818-a49e-b21144524e9a","originalAuthorName":"刘海华"},{"authorName":"梅启林","id":"c8e95134-a27b-4add-8c49-be1c6726cc82","originalAuthorName":"梅启林"},{"authorName":"黄志雄","id":"c2a3f958-eec6-4bbb-8256-cfbb0ee9011e","originalAuthorName":"黄志雄"}],"doi":"","fpage":"105","id":"7df4ae88-9758-456f-93c4-a76096808678","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"f9397215-82ec-40b4-a83e-a184414202ed","keyword":"结晶聚合物","originalKeyword":"结晶聚合物"},{"id":"fb4f3463-de9a-411d-84b0-f092088e4072","keyword":"低压SMC","originalKeyword":"低压SMC"},{"id":"1f40c01e-5234-4e10-99ce-405799d76296","keyword":"固化动力学","originalKeyword":"固化动力学"},{"id":"56a72f21-9e5f-4ef6-8998-8c5777157690","keyword":"凝胶动力学","originalKeyword":"凝胶动力学"},{"id":"bfd1c039-c1ff-4433-a4d2-2a24f966f6f9","keyword":"模型","originalKeyword":"模型"}],"language":"zh","publisherId":"gfzclkxygc200804026","title":"低压SMC体系的固化动力学及凝胶化理论","volume":"24","year":"2008"},{"abstractinfo":"综述了无机粒子和纳米粒子/聚合物复合材料的一些结晶性能,主要论述无机粒子对聚合物结晶的熔点、结晶温度及结晶度的影响;聚合物晶形及结构的变化;并论述了无机粒子和纳米粒子/聚合物复合材料的结晶动力学理论;概括了无机粒子和纳米粒子/聚合物复合材料的结晶影响因素.","authors":[{"authorName":"杨华明","id":"cc221561-2d83-41ea-bf45-23736f628e9d","originalAuthorName":"杨华明"},{"authorName":"曹建红","id":"7de304f8-8e80-42ba-bb64-c92dbecae78d","originalAuthorName":"曹建红"},{"authorName":"敖伟琴","id":"c2d6a7b2-af76-4789-9bbd-800a860e3080","originalAuthorName":"敖伟琴"},{"authorName":"邱冠周","id":"b0516f9f-f193-46f0-a658-eddcd6f66622","originalAuthorName":"邱冠周"}],"doi":"","fpage":"68","id":"024ed85e-1115-4464-8a60-26ec19f95df6","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"7ada43f4-14df-4871-892f-16b7425daa21","keyword":"聚合物复合材料","originalKeyword":"聚合物复合材料"},{"id":"955139b3-0dc9-470b-afa4-467ab66b37f5","keyword":"结晶性能","originalKeyword":"结晶性能"},{"id":"eb711498-e8bd-4146-bcae-7ca7577e34b5","keyword":"无机材料","originalKeyword":"无机材料"},{"id":"a6a07e39-dc6d-4d99-b140-0efe430e8d8c","keyword":"纳米粒子","originalKeyword":"纳米粒子"}],"language":"zh","publisherId":"gfzclkxygc200303015","title":"无机粒子/聚合物复合材料的结晶行为","volume":"19","year":"2003"},{"abstractinfo":"较为详细地综述了光散射在聚合物结晶研究中的应用,并着重介绍了光散射在聚合物结晶形态及变形、结晶动力学、含结晶聚合物共 混体系、液晶等领域的研究中的发展历史和研究现状.","authors":[{"authorName":"杨其","id":"38f2cfcc-7890-4e3f-87cf-dedd386fddec","originalAuthorName":"杨其"},{"authorName":"李光宪","id":"2481a32b-3ca6-4c4d-a765-608260769419","originalAuthorName":"李光宪"},{"authorName":"雷彩红","id":"87058689-d812-4dfe-90ee-90657fd8b0c4","originalAuthorName":"雷彩红"}],"doi":"","fpage":"45","id":"347104df-dbe1-4039-a0ca-7533d5ad7e35","issue":"5","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"eda413a6-4133-4668-80a9-6fb044ee830d","keyword":"光散射","originalKeyword":"光散射"},{"id":"2c09a5d4-eca6-479c-b23b-045801b099e1","keyword":"聚合物","originalKeyword":"聚合物"},{"id":"c6d38f1c-04ec-4f29-b6e2-551de32c4ec5","keyword":"结晶","originalKeyword":"结晶"}],"language":"zh","publisherId":"gfzclkxygc200205010","title":"光散射技术在聚合物结晶研究中的应用","volume":"18","year":"2002"},{"abstractinfo":"采用反气相色谱法(IGC)测定了结晶聚合物聚乙二醇(PEG)的熔点和结晶度,探讨了探针分子的性质、固定相中聚合物的涂布量对测定结果的影响,同时与热分析(DSC)方法测得的结果作了比较.结果表明,IGC法测定结晶聚合物熔点和结晶度是一种非常实用可靠的技术,其优点在于并不依赖100%纯结晶聚合物的性质,PEG的熔点测得值为67 ℃,结晶度为89.7%,测定结果与DSC法的测得值(T m=67.9 ℃,Xc=90.6%)相近,所测定的结果与探针分子的性质无关 ,但受PEG在担体上的涂布量的影响显著.","authors":[{"authorName":"邹其超","id":"4bddb055-64be-4275-adea-5f7a867132d7","originalAuthorName":"邹其超"},{"authorName":"彭顺金","id":"fc9504c9-3ce8-40d3-95d1-e5c94a19bb26","originalAuthorName":"彭顺金"},{"authorName":"方光荣","id":"ba944ee3-6bb7-4d7b-91cb-2e6f408109ed","originalAuthorName":"方光荣"},{"authorName":"岳霞丽","id":"b5b74b81-5826-4c21-8ced-480824302322","originalAuthorName":"岳霞丽"}],"doi":"10.3321/j.issn:1000-8713.2000.03.004","fpage":"202","id":"efff55be-7590-43bc-a285-1d7cb76fbb30","issue":"3","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"05b8e304-d3f5-4767-8dc1-d5bdd35310f9","keyword":"反气相色谱法","originalKeyword":"反气相色谱法"},{"id":"65d0efc9-ca50-46fd-a887-89d18b635c1d","keyword":"结晶度","originalKeyword":"结晶度"},{"id":"887f08dc-fb80-40f3-8832-0f6d97f4186a","keyword":"熔点","originalKeyword":"熔点"},{"id":"e592c429-355c-4c50-b3c1-3b601060b313","keyword":"探针分子","originalKeyword":"探针分子"},{"id":"00c7f2ab-b450-4b10-a252-2f68e631def5","keyword":"涂布量","originalKeyword":"涂布量"},{"id":"c7de5edc-2e54-47b3-a834-92376106e092","keyword":"聚乙二醇","originalKeyword":"聚乙二醇"}],"language":"zh","publisherId":"sp200003004","title":"反气相色谱法研究结晶聚合物结晶行为","volume":"18","year":"2000"},{"abstractinfo":"综述了尼龙/MMT、PP/MMT、PET/MMT等代表性的结晶聚合物/MMT纳米复合材料结晶行为,分析了MMT的加入对聚合物结晶的影响,提出建立聚合物/MMT纳米复合材料宏观性能和微观结构之间的关系,并展望了未来的发展方向.","authors":[{"authorName":"黄明福","id":"1ec24c6f-096d-4da9-b5e4-7afcae209f6f","originalAuthorName":"黄明福"}],"doi":"10.3969/j.issn.1005-0299.2008.04.015","fpage":"502","id":"9dccca80-eeb9-486a-81f9-7bcf232a37d5","issue":"4","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"c48b80d3-5ac2-412a-8bc1-e9f82384bb06","keyword":"聚合物","originalKeyword":"聚合物"},{"id":"3590b6e0-c289-4616-bd24-d9d4198cedf6","keyword":"结晶行为","originalKeyword":"结晶行为"},{"id":"4ed01501-41c7-4be9-bcdb-67197edbb831","keyword":"蒙脱土","originalKeyword":"蒙脱土"},{"id":"7c5ca6de-211e-416e-8fa3-e13b323d3814","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"44a9c0e7-9db9-44e4-b755-5951f455f27c","keyword":"纳米","originalKeyword":"纳米"}],"language":"zh","publisherId":"clkxygy200804015","title":"聚合物/MMT纳米复合材料的结晶性能","volume":"16","year":"2008"},{"abstractinfo":"简述了嵌段聚合物热塑性弹性体的分类,综述了其结晶结构的研究方法,以及综述了嵌段聚合物热塑性弹性体的化学组分、结晶结构与性能的关系。","authors":[{"authorName":"潘红霞","id":"13080cce-1ab2-4d48-8dfe-5f3e61a5e7e2","originalAuthorName":"潘红霞"},{"authorName":"李光","id":"40e783c1-3b20-454f-9310-e2e6b7aa9f81","originalAuthorName":"李光"},{"authorName":"江建明","id":"ce0dfe9d-7f54-4a8e-8822-6fda0fdd8552","originalAuthorName":"江建明"}],"doi":"","fpage":"24","id":"6b238ca1-d0ad-4885-ba8b-a6017b4d8efa","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"e6e34338-fc53-4157-b2c4-e82cd0dfb295","keyword":"嵌段聚合物","originalKeyword":"嵌段聚合物"},{"id":"92f6cab1-dfb2-4780-aa4c-84eca58aaad3","keyword":"热塑性弹性体","originalKeyword":"热塑性弹性体"},{"id":"00992ba7-fcb4-4ad7-93e7-0241b762e229","keyword":"结晶结构","originalKeyword":"结晶结构"},{"id":"e90c5f7e-1cf3-4e17-8389-c5c56c9a3c12","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"gfzclkxygc200103006","title":"嵌段聚合物热塑性弹性体的结晶结构与性能","volume":"17","year":"2001"},{"abstractinfo":"分析了硅橡胶作为基体材料,分别以炭黑、石墨、碳纤维3种碳系材料作为导电填料获得的复合的电阻温度特性差异。结果表明炭黑作为填料的复合样品没有正向电阻温度特性,石墨样品仅在较小的温度范围(55~75℃)具有明显的正向电阻温度特性,而碳纤维样品在较大的温度范围(25~90℃)具有较明显的正向电阻温度特性,且电阻温度变化近似线性。综合考虑,碳系填料的形状是影响非结晶聚合物/碳系填料复合正温度系数的主要因素;非结晶聚合物/碳纤维复合电阻温度特性具有较好的线性,可用于柔性温度传感器的敏感材料。","authors":[{"authorName":"黄英","id":"a49b88d4-b464-4a36-b3a0-3a34081ccc76","originalAuthorName":"黄英"},{"authorName":"赵兴","id":"f089658b-c801-475e-9992-c66771198e58","originalAuthorName":"赵兴"},{"authorName":"高峰","id":"4b1f82d4-d89a-401b-a090-d91a30bdcbbe","originalAuthorName":"高峰"},{"authorName":"廉超","id":"5b237d39-48cf-4078-bac6-97a87005849a","originalAuthorName":"廉超"},{"authorName":"张玉刚","id":"2313562d-ad08-4d4f-aa16-77ab0848c656","originalAuthorName":"张玉刚"},{"authorName":"仇怀利","id":"8e1faa65-908b-4e39-bb7f-85551effb120","originalAuthorName":"仇怀利"}],"doi":"","fpage":"1873","id":"4a64f13a-4a03-45cc-95c4-5d8fd74e363f","issue":"10","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"c9eb25e7-241c-41ef-a29e-33a61ad96aab","keyword":"非结晶聚合物","originalKeyword":"非结晶聚合物"},{"id":"c3d3e928-9952-4c09-9fe5-48f120fb62f0","keyword":"碳系填料","originalKeyword":"碳系填料"},{"id":"de0ed72a-cea2-4278-9ab4-963f543ca4ab","keyword":"电阻温度特性","originalKeyword":"电阻温度特性"},{"id":"8db0c791-af5f-4715-8072-938774d7c713","keyword":"柔性","originalKeyword":"柔性"},{"id":"a9bfeb8a-4a6e-4735-bb33-fd8c36be8de6","keyword":"温度传感器","originalKeyword":"温度传感器"}],"language":"zh","publisherId":"gncl201110036","title":"非结晶聚合物/碳系填料复合的电阻温度特性","volume":"42","year":"2011"}],"totalpage":5069,"totalrecord":50684}