欢迎登录材料期刊网

材料期刊网

高级检索

以攀枝花钛精粉为载体,使用大载荷热重分析仪,在H2和CO混合气中,研究了纳米碳管的制备工艺.利用热重分析(TG)、气相色谱分析(GC)、扫描电镜(SEM)、比表面积(BET)、透射电镜(TEM)和X射线衍射(XRD)对工艺过程中产物相组成及其微观形貌进行了表征.结果表明:攀枝花钛精粉在H2-CO气氛中,由于气基还原和析碳作用,其热重曲线首先随时间的延长而逐渐降低,达最低点后逐渐升高;生成纳米碳管的最佳工艺参数是钛精粉首先经过还原制备还原产物,其相主要由Fe和M3O5固溶体组成;随后在体积浓度80%的一氧化碳气氛中逐渐降温,温度达550℃时恒温2 h;制备的纳米碳管量约是原矿粉质量的3.5倍,直径小于100 nm、比表面积约151 m2/g;纳米碳管的产生是以铁为析碳基体,且还原产物中其他矿相有效阻止了铁颗粒的团聚,其生长是吸附-反应-产物扩散的过程.

A preparation technology of carbon nanotubes was studied in hydrogen and carbon monoxide by heavy loading thermogravimetric analysis,using Panzhihua ilmenite concentrate as catalysts.During the process,the phase composition and microstructures of the products were characterized by means of thermogravimetry,gas chromatographic analysis,scanning electron microscopy,specific surface area,transmission electron microscope and X-ray diffraction.The results indicated that the weight of ilmenite concentrate decreased firstly and then increased gradually with reaction time under H2-CO atmosphere owing to gas-basis reduction and deposition of carbon.The optimal process was that the reductive products with Fe and M3O5 solid solution phase were prepared by reduction of titanium concentrate,and the temperature was decreased in 80%carbon monoxide gradually and kept 550 ℃ for 2 h.The carbon nanotubes,which were less 100 nm of diameter and 151 m2/g of specific surface,were about 3.5 times than the ilmenite concentrate.The iron was regarded as matrix material of producing of carbon nanotubes and its agglomeration was prevented by other mineral phase owing to mutual infiltration.Growth of carbon nanotubes were controlled by adsorption,reaction and diffusion during the process.

参考文献

[1] 王茂章,李峰,杨全红,成会明.由不同碳源合成及制备纳米碳管的进展[J].新型炭材料,2003(04):250-264.
[2] 李峰,白朔,成会明.纳米碳管[J].新型炭材料,2000(03):79-80.
[3] 古玲,赵建国.化学气相沉积工艺制备绳状纳米碳管的研究[J].炭素技术,2011(02):6-8.
[4] W.X. Chen;J.P. Tu;L.Y. Wang;H.Y. Gan;Z.D. Xu;X.B. Zhang .Tribological application of carbon nanotubes in a metal-based composite coating and composites[J].Carbon: An International Journal Sponsored by the American Carbon Society,2003(2):215-222.
[5] 李仲,英哲,刘敏,成会明.熔融纺丝方法制备纳米碳管/聚丙烯复合纤维及其拉伸性能[J].新型炭材料,2005(02):108-114.
[6] 应永飞,严新焕,王文静,徐振元.CVD一步法制备纳米碳管的研究[J].材料科学与工程学报,2003(02):242-245.
[7] 曹宗良,王健农,丁冬雁,戴杰华,余帆.化学气相沉积法快速生长定向纳米碳管[J].新型炭材料,2003(01):48-52.
[8] 刘畅,成会明.电弧放电法制备纳米碳管[J].新型炭材料,2001(01):67-71.
[9] Wolfgang K. Maser;Ana M. Benito;M. Teresa Martinez .Production of carbon nanotubes: the light approach[J].Carbon: An International Journal Sponsored by the American Carbon Society,2002(10):1685-1695.
[10] 李克,聂聪,吕功煊,刘建福.Ni-Sm-MgO催化热解CO制备碳纳米管[J].分子催化,2005(06):419-424.
[11] H. Ghorbani;A.M. Rashidi;S. Rastegari;S. Mirdamadi;M. Alaei .Mass production of multi-wall carbon nanotubes by metal dusting process with high yield[J].Materials Research Bulletin: An International Journal Reporting Research on Crystal Growth and Materials Preparation and Characterization,2011(5):716-721.
[12] Suhong Lu;Cheng Zhang;Yuan Liu .Carbon nanotube supported Pt-Ni catalysts for preferential oxidation of CO in hydrogen-rich gases[J].International journal of hydrogen energy,2011(3):1939-1948.
[13] Zhang L;Zhang LN;Wang MY;Li GQ;Sui ZT .Precipitation selectivity of perovskite phase from Ti-bearing blast furnace slag under dynamic oxidation conditions[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2007(22/23):2214-2220.
[14] 吴贤,张健.中国的钛资源分布及特点[J].钛工业进展,2006(06):8-12.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%