欢迎登录材料期刊网

材料期刊网

高级检索

在热模拟试验机上对铸态组织的阻燃钛合金(Ti-35V-15Cr-Si-C)进行了等温恒应变速率热压缩试验,温度范围为900~1200℃,应变速率范围为10-3~1 s-1,测试了其真应力-真应变曲线并对曲线上的应力σ突降进行了解释.基于动态材料模型建立了合金的热加工图,结合微观组织观察,确定了3个不同区域的高温变形机制:温度900~1030℃、应变速率小于0.1 s-1时,变形机制为动态回复和连续动态再结晶;温度大于1030℃、应变速率小于0.1 s-1时,功率耗散效率η出现峰值,除了动态回复和连续动态再结晶,还出现碳化物溶解现象;高应变速率(ε大致在0.01~1 s-1之间)区,是合金的变形失稳区域,较低温度时失稳机制为局部流动,高温失稳与碳化物溶解有关,ε=1 s-1时组织演变特征是项链状动态再结晶.

参考文献

[1] Leng Liming;Huang Xu;Wang Bao et al.[J].Rare Metal Materials and Engineering(稀有金属材料与工程),2008,37(z3):424.
[2] Hansen J O;Sound H;Novotnak D et al.[P].US Paten:5397404,1995.
[3] Seagle S R .[J].Material Science and Engineering,1996,A213:1.
[4] Xin Shewei;Zhao Yongqing;Wu Huan et al.[J].Rare Metal Materials and Engineering(稀有金属材料与工程),2010,39(02):224.
[5] Xin Shewei;Zhao Yongqing;Zeng Weidong et al.[J].The Chinese Journal of Nonferrous Metals(中国有色金属学报),2008,18(07):1216.
[6] Zhao Yongqing;Shu Ying;Zeng Weidong et al.[J].Rare Metal Materials and Engineering(稀有金属材料与工程),2009,38(08):1432.
[7] Hu Yin;Lu Shiqiang;Cao Jingxia et al.[J].Forging&Stamping Technology(锻压技术),2011,36(02):119.
[8] Prasad Y V R K et al.[J].International Materials Reviews,1998,43(06):243.
[9] Prasad Y V R K .[J].lndian J Technol,1990,28:435.
[10] Zhao Yongqing .Deformation Mechanism and Burn Resistance Mechanism of Ti40 Burn Resistance Titanium Alloy[D].Shenyang:Northeastern University,1998.
[11] Zhang Xuemin .Research on Deformation Mechanism and Fracture Criterion of Ti40 Burn Resistant Titanium Alloy in Hot Metal Forming[D].Xi'an:Northwestern Polytechnical University,2007.
[12] Zeng Weidong;Zhou Yigang;Shu Ying et al.[J].Rare Metal Materials and Engineering(稀有金属材料与工程),2007,36(01):1.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%