在热模拟试验机上对铸态组织的阻燃钛合金(Ti-35V-15Cr-Si-C)进行了等温恒应变速率热压缩试验,温度范围为900~1200℃,应变速率范围为10-3~1 s-1,测试了其真应力-真应变曲线并对曲线上的应力σ突降进行了解释.基于动态材料模型建立了合金的热加工图,结合微观组织观察,确定了3个不同区域的高温变形机制:温度900~1030℃、应变速率小于0.1 s-1时,变形机制为动态回复和连续动态再结晶;温度大于1030℃、应变速率小于0.1 s-1时,功率耗散效率η出现峰值,除了动态回复和连续动态再结晶,还出现碳化物溶解现象;高应变速率(ε大致在0.01~1 s-1之间)区,是合金的变形失稳区域,较低温度时失稳机制为局部流动,高温失稳与碳化物溶解有关,ε=1 s-1时组织演变特征是项链状动态再结晶.
参考文献
[1] | Leng Liming;Huang Xu;Wang Bao et al.[J].Rare Metal Materials and Engineering(稀有金属材料与工程),2008,37(z3):424. |
[2] | Hansen J O;Sound H;Novotnak D et al.[P].US Paten:5397404,1995. |
[3] | Seagle S R .[J].Material Science and Engineering,1996,A213:1. |
[4] | Xin Shewei;Zhao Yongqing;Wu Huan et al.[J].Rare Metal Materials and Engineering(稀有金属材料与工程),2010,39(02):224. |
[5] | Xin Shewei;Zhao Yongqing;Zeng Weidong et al.[J].The Chinese Journal of Nonferrous Metals(中国有色金属学报),2008,18(07):1216. |
[6] | Zhao Yongqing;Shu Ying;Zeng Weidong et al.[J].Rare Metal Materials and Engineering(稀有金属材料与工程),2009,38(08):1432. |
[7] | Hu Yin;Lu Shiqiang;Cao Jingxia et al.[J].Forging&Stamping Technology(锻压技术),2011,36(02):119. |
[8] | Prasad Y V R K et al.[J].International Materials Reviews,1998,43(06):243. |
[9] | Prasad Y V R K .[J].lndian J Technol,1990,28:435. |
[10] | Zhao Yongqing .Deformation Mechanism and Burn Resistance Mechanism of Ti40 Burn Resistance Titanium Alloy[D].Shenyang:Northeastern University,1998. |
[11] | Zhang Xuemin .Research on Deformation Mechanism and Fracture Criterion of Ti40 Burn Resistant Titanium Alloy in Hot Metal Forming[D].Xi'an:Northwestern Polytechnical University,2007. |
[12] | Zeng Weidong;Zhou Yigang;Shu Ying et al.[J].Rare Metal Materials and Engineering(稀有金属材料与工程),2007,36(01):1. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%