{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"为了获得缓蚀性能优异的新型表面活性剂,以3种对氨基苯甲酸碱和聚乙二醇月桂酸单酯为原料,合成了3种聚乙二醇月桂酸单酯碱基表面活性剂.利用极化曲线、交流阻抗研究了3种表面活性剂对碳钢在模拟油田水中的的缓蚀性能;利用分子动力学模拟方法对其在Fe(110)表面的吸附行为进行研究,深入探讨其缓蚀机理.结果表明:3种表面活性剂缓蚀性能较好,20℃,100 mg/L时缓蚀率均达80%以上;3种表面活性剂均以其分子结构中的碱基先与Fe表面靠近,分子动力学模拟得出的3种表面活性剂缓蚀性能排序与电化学研究的结果相吻合.","authors":[{"authorName":"刘进","id":"c64c0e87-1be0-4d52-9193-6302dbcd49c1","originalAuthorName":"刘进"},{"authorName":"尚伟","id":"adbfecda-6a96-4082-a8da-22fd89c83930","originalAuthorName":"尚伟"},{"authorName":"张菁","id":"51345d70-1acd-45da-ac5b-9fa52e60afee","originalAuthorName":"张菁"},{"authorName":"刘峥","id":"8e0e0312-9522-45e6-a386-4f9459805ac6","originalAuthorName":"刘峥"}],"doi":"","fpage":"26","id":"66ad4295-4a1e-420c-a3c7-35f8227eaea8","issue":"8","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"bd48178f-59e4-40cc-b93d-af3d5b34f920","keyword":"碱基表面活性剂","originalKeyword":"席夫碱基表面活性剂"},{"id":"8c282c85-cfb7-43ff-a42b-d07e344d0a34","keyword":"缓蚀性能","originalKeyword":"缓蚀性能"},{"id":"07c8f830-4ccb-4c17-837f-a80b68784c55","keyword":"碳钢","originalKeyword":"碳钢"},{"id":"843ce31c-e307-4c59-90f7-ef06b6b68723","keyword":"模拟油田水","originalKeyword":"模拟油田水"},{"id":"d3004173-2a95-468e-81fe-1a4f3620c1a3","keyword":"分子动力学模拟","originalKeyword":"分子动力学模拟"}],"language":"zh","publisherId":"clbh201408008","title":"聚乙二醇月桂酸单酯碱基表面活性剂的合成及其缓蚀性能","volume":"47","year":"2014"},{"abstractinfo":"合成了三种对氨基苯甲酸碱(A1,A2,A3),利用硼酸酯化法合成聚乙二醇(400)月桂酸单酯,并将碱与乙二醇月桂酸单酯经缩合反应合成三种聚乙二醇月桂酸单酯碱基表面活性剂(B1,B2,B3).通过红外光谱法对A1,A2,A3及B1,B2,B3进行结构表征,并测定了B1,B2,B3的表面活性.通过失重法,扫描电镜法对B1、B2、B3在模拟油田水中对碳钢的缓蚀性能进行研究.结果表明,三种表面活性剂都具有良好的缓蚀性能.随浓度的增大,缓蚀率逐渐增大,当浓度达到100mg/L时缓蚀性能最好,可达80%以上,其缓蚀能力的大小为B3>B2>B1.","authors":[{"authorName":"张菁","id":"53ac6b16-40aa-42ba-a9c2-40cf83c5527c","originalAuthorName":"张菁"},{"authorName":"刘峥","id":"a6c59f0a-d6fc-490d-befd-a30b6c6af650","originalAuthorName":"刘峥"},{"authorName":"刘进","id":"5f728988-057a-4fe0-9681-09e0d13be5c5","originalAuthorName":"刘进"},{"authorName":"尚伟","id":"54959b2b-3706-43a5-be9b-29dedfdf815a","originalAuthorName":"尚伟"}],"doi":"","fpage":"775","id":"087ce79e-918d-4c05-bdc5-becca020ee1c","issue":"8","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"2f37d0d7-d019-47b7-9798-4a42cced1f33","keyword":"碱基表面活性剂","originalKeyword":"席夫碱基表面活性剂"},{"id":"757ae1eb-17c4-443f-8feb-4b107b5db0fc","keyword":"碳钢","originalKeyword":"碳钢"},{"id":"3c1371d2-f334-4fd3-8cb3-50e31e90fb70","keyword":"缓蚀","originalKeyword":"缓蚀"},{"id":"c3e8a44f-2ac5-4f26-8f54-f42cfd58f173","keyword":"模拟油田水","originalKeyword":"模拟油田水"}],"language":"zh","publisherId":"fsyfh201408003","title":"聚乙二醇月桂酸单酯碱基非离子型表面活性剂的合成及缓蚀性能","volume":"35","year":"2014"},{"abstractinfo":"两亲性表面活性剂(Gemini)是通过一个联接基团将两个传统表面活性剂分子在其亲水头基处连接在一起而形成的一类新型表面活性剂.构建了表面活性剂分子球簧结构模型,采用耗散粒子动力学方法(DPD),研究了表面活性剂在水溶液中的自组装行为,考察了添加醇分子对表面活性剂自组装结构以及临界胶束浓度(CMC)的影响.结果表明随着表面活性剂分子浓度的增加,其水溶液中依次出现球状、蠕虫状以及层状胶束等自组装结构;添加醇分子可提高表面活性剂疏水基团在溶液中的溶解性从而增大表面活性剂溶液的CMC,具有抑制胶束生成的作用.","authors":[{"authorName":"杨宇","id":"a8b12f34-305b-4048-829c-3d69cbc167e2","originalAuthorName":"杨宇"},{"authorName":"周广刚","id":"6ef60955-db11-45bb-9448-3b6fa5348386","originalAuthorName":"周广刚"},{"authorName":"孟思炜","id":"56b6a7ca-350b-4f35-b23c-2009b2b501e3","originalAuthorName":"孟思炜"},{"authorName":"邱贝贝","id":"49aca478-9c37-42e7-859a-75daeeedcffb","originalAuthorName":"邱贝贝"},{"authorName":"徐志彦","id":"55332031-f6eb-45a5-970c-8c090e0533b5","originalAuthorName":"徐志彦"},{"authorName":"王雨翔","id":"7ccef33e-2b10-46d5-8038-fc55e458a309","originalAuthorName":"王雨翔"},{"authorName":"孙晓亮","id":"b894caf9-78a6-40ad-898a-e2e5d78057a3","originalAuthorName":"孙晓亮"},{"authorName":"李桢禹","id":"41499a06-b53a-449e-8396-831f38a66285","originalAuthorName":"李桢禹"},{"authorName":"卢贵武","id":"506238c0-b288-4b8f-8866-57bfb1f6f928","originalAuthorName":"卢贵武"}],"doi":"","fpage":"675","id":"2ed37d1b-190d-43c6-82f3-0ca38b10bee1","issue":"4","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"58251dcb-21cb-463a-b435-5d0098649189","keyword":"Gemini表面活性剂","originalKeyword":"Gemini表面活性剂"},{"id":"e5d01ccb-e803-4ce3-8f05-96f4688856d6","keyword":"耗散粒子动力学","originalKeyword":"耗散粒子动力学"},{"id":"c3639cd8-3d34-42c3-a6a6-78c36ab69ab5","keyword":"自组装","originalKeyword":"自组装"},{"id":"b3f8cd76-cafa-4f6b-954a-ce3db403a01e","keyword":"临界胶束浓度","originalKeyword":"临界胶束浓度"}],"language":"zh","publisherId":"rgjtxb98201704019","title":"阳离子Gemini表面活性剂溶液的自组装结构","volume":"46","year":"2017"},{"abstractinfo":"从分子结构的角度,介绍了新型表面活性剂在涂料中的应用.着重介绍了Gemini型、Bola型、AB嵌段型、Dendrimer型表面活性剂的特点及功能,给出了各种表面活性剂用作助剂的动态.","authors":[{"authorName":"郭宏涛","id":"8104ac9d-9ee9-4028-a714-6c131281971d","originalAuthorName":"郭宏涛"},{"authorName":"许钧强","id":"86981e65-d7ad-4079-b2f5-6f8f0cc0c907","originalAuthorName":"许钧强"},{"authorName":"何唯平","id":"495a5e2b-445b-4bb9-9f07-0f12d3f0349b","originalAuthorName":"何唯平"}],"doi":"10.3969/j.issn.0253-4312.2008.06.017","fpage":"59","id":"3f97d223-06db-4ea2-98c2-38c3e558ac1f","issue":"6","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"31c1d548-0fef-43cd-b3fa-46ba5c1ee6f0","keyword":"表面活性剂","originalKeyword":"表面活性剂"},{"id":"70f77323-4ab7-477f-aebc-f98e444aa9d0","keyword":"涂料","originalKeyword":"涂料"},{"id":"13435637-f43a-4f50-9ebf-dbd1f4257307","keyword":"助剂","originalKeyword":"助剂"}],"language":"zh","publisherId":"tlgy200806017","title":"新型结构表面活性剂在涂料中的应用","volume":"38","year":"2008"},{"abstractinfo":"恰当地选择和使用表面活性剂是分散镀液中不溶性颗粒的一种有效方法.对化学复合镀机理及表面活性剂在化学复合镀中的分散机理进行了探讨.介绍了表面活性剂在化学复合镀中的应用情况.对表面活性剂在化学复合镀中的广阔应用前景进行了展望.","authors":[{"authorName":"万家瑰","id":"0cbea5c3-1d7f-48f1-adc3-a149ef9d689f","originalAuthorName":"万家瑰"},{"authorName":"李淑华","id":"bf1621f5-b29e-4df6-8fc8-302a2b5b9823","originalAuthorName":"李淑华"}],"doi":"10.3969/j.issn.1004-227X.2006.11.013","fpage":"46","id":"aa9680fd-ff7b-442c-b075-35c5e87639c7","issue":"11","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"ce365f80-5bd5-40d5-95dc-0ec9956cff79","keyword":"化学复合镀Ni-P","originalKeyword":"化学复合镀Ni-P"},{"id":"0ea947d8-6417-41b4-a8a9-3d6109da1e85","keyword":"表面活性剂","originalKeyword":"表面活性剂"},{"id":"48e3cba4-797d-4373-af14-d576eda85c6c","keyword":"分散机理","originalKeyword":"分散机理"}],"language":"zh","publisherId":"ddyts200611013","title":"表面活性剂在Ni-P化学复合镀中的应用","volume":"25","year":"2006"},{"abstractinfo":"研究了Gemini阴离子表面活性剂表面活性.结果表明,其表面活性远远高于相应的单基表面活性剂,其临界胶束浓度(CMC)比相应的单基表面活性剂降低了1个数量级,且随着联接基团长度的增加,CMC呈减小的趋势;测定了Gemim阴离子表面活性剂表面张力,其C20比常用的单基表面活性剂降低了2个数量级,显示出突出的降低水表面张力的效率;油水界面张力的测定结果表明,在Gemini D质量分数为0.1%时,就可以使得油水界面张力达到超低,具有突出的降低油水界面张力的能力.","authors":[{"authorName":"朱森","id":"ccc8b59b-0cfd-41e9-b84a-eb2ca00f0da8","originalAuthorName":"朱森"},{"authorName":"程发","id":"aba9dd69-84c5-4bc0-b340-7e44b7843694","originalAuthorName":"程发"},{"authorName":"郑宝江","id":"02e52c95-8504-4010-901c-17d1444e8ca7","originalAuthorName":"郑宝江"},{"authorName":"于九皋","id":"32ffa083-5e90-4884-8ea8-6d12d98dce98","originalAuthorName":"于九皋"}],"doi":"10.3969/j.issn.1000-0518.2005.07.021","fpage":"792","id":"dbb4ce37-0fb1-4e33-b041-fd16ef63672d","issue":"7","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"30e7643f-c046-43d8-80aa-6760353acddb","keyword":"Gemini阴离子表面活性剂","originalKeyword":"Gemini阴离子表面活性剂"},{"id":"5ac432e5-fc96-4121-bc60-3e89ebe88074","keyword":"表面张力","originalKeyword":"表面张力"},{"id":"a75d1612-c614-4193-9453-f2a17d7efdaf","keyword":"CMC","originalKeyword":"CMC"},{"id":"acf91b8d-69d9-45d7-b7d6-d459ce2588a3","keyword":"C20","originalKeyword":"C20"},{"id":"0e0ff8c0-7bce-491d-aa0b-ffb3b886d9f8","keyword":"界面张力","originalKeyword":"界面张力"}],"language":"zh","publisherId":"yyhx200507021","title":"Gemini阴离子表面活性剂水溶液的界面活性","volume":"22","year":"2005"},{"abstractinfo":"Gemini表面活性剂结构特殊,性能优越,在石油、化工等领域有着重要的研究与应用前景.文中对Gemini表面活性剂的结构、性质及应用进行了综述.","authors":[{"authorName":"丁运生","id":"2f78ddd1-65b8-4ae1-ab3d-b0cdfb4efaa5","originalAuthorName":"丁运生"},{"authorName":"查敏","id":"bc5a1687-d40a-494a-aefb-5ecbac9d58e7","originalAuthorName":"查敏"},{"authorName":"王僧山","id":"ca423429-ccba-444e-ab67-a78efc26b318","originalAuthorName":"王僧山"}],"doi":"","fpage":"24","id":"378a579f-6f28-43b5-988a-7883776dd5f0","issue":"6","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"fa56b8b6-19f9-416e-ace5-f7325cb7f9b4","keyword":"Gemini表面活性剂","originalKeyword":"Gemini表面活性剂"},{"id":"c8ffeb74-b42f-4c87-9c32-11656e522aa8","keyword":"性质","originalKeyword":"性质"},{"id":"a40eec5a-e79a-41dd-93b7-2e37ae7049bc","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"gfzclkxygc200506006","title":"Gemini表面活性剂的性质与应用","volume":"21","year":"2005"},{"abstractinfo":"研究了阳离子型表面活性剂(十六烷基三甲基溴化铵)、阴离子型表面活性剂(十二烷基苯磺酸钠)以及非离子型表面活性剂(聚乙二醇)对镁合金浸锌液的稳定性、浸锌层表面形貌和耐腐蚀性能的影响.结果表明:随着表面活性剂加入,浸锌液稳定性明显改善;表面活性剂对浸锌层的表面形貌和耐蚀性影响较大,添加阴离子表面活性剂的浸锌层细小致密,耐蚀性能良好.","authors":[{"authorName":"沟引宁","id":"a038eac9-7b26-44c0-8e06-32600914cb0b","originalAuthorName":"沟引宁"},{"authorName":"李鑫洋","id":"0b1a230a-9e11-4804-9c74-949ae75592e2","originalAuthorName":"李鑫洋"}],"doi":"10.3969/j.issn.1001-3660.2012.01.015","fpage":"51","id":"f266de90-666b-4869-8d7e-ba577d385e3a","issue":"1","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"a3e7c076-580c-4443-9131-7ea1e5364ef8","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"189c403b-e7e1-480b-9301-4ba772444914","keyword":"浸锌","originalKeyword":"浸锌"},{"id":"eff1d5db-b2e2-4d0d-b0bc-c1db6a24444f","keyword":"表面活性剂","originalKeyword":"表面活性剂"},{"id":"0775f153-a5ee-4363-8d43-0552ec12d589","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"bmjs201201015","title":"表面活性剂对镁合金浸锌的影响","volume":"41","year":"2012"},{"abstractinfo":"采用动电势扫描法测定了几种表面活性剂对镍-纳米微粒复合镀液的阴极行为的影响,并与基础镀镍液中的阴极极化曲线进行了比较.结果表明:复合镀液中表面活性剂对阴极极化行为的影响较为复杂,纳米微粒不同,表面活性剂对阴极极化行为影响差别较大;而在基础镀镍液中所选定的表面活性剂均能不同程度的增加极化,离子型表面活性剂与非离子型表面活性剂混合使用时更能较大程度的增加阴极极化.","authors":[{"authorName":"陈玉梅","id":"facad976-2fd1-4b9d-a2ac-3cd16e7a0d45","originalAuthorName":"陈玉梅"},{"authorName":"刘娜","id":"8e2567e9-61dc-4e3e-9c68-ed38c1da3150","originalAuthorName":"刘娜"},{"authorName":"左正忠","id":"ce59c527-e200-4dc4-9dc7-44de840d7ad4","originalAuthorName":"左正忠"},{"authorName":"杨磊","id":"d6a6636b-07d5-4073-a4fa-91ce7e94d532","originalAuthorName":"杨磊"},{"authorName":"王池","id":"45851a0c-97af-497b-9d78-44484a5de8a8","originalAuthorName":"王池"}],"doi":"10.3969/j.issn.1001-3849.2006.03.003","fpage":"8","id":"c02944ab-91e6-46f7-8ba0-07ab7dc4d0f9","issue":"3","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"52ceaedc-e8ce-4970-a9e4-288e257e50be","keyword":"阴极极化","originalKeyword":"阴极极化"},{"id":"56dc3878-8e26-49a0-9510-b2edc336a49b","keyword":"表面活性剂","originalKeyword":"表面活性剂"},{"id":"5b8dd1dc-00f5-4503-9e52-9fbf911b539f","keyword":"纳米复合镀","originalKeyword":"纳米复合镀"}],"language":"zh","publisherId":"ddjs200603003","title":"表面活性剂对复合镀镍液阴极极化的影响","volume":"28","year":"2006"},{"abstractinfo":"为了筛选出适用于GF419封孔的最优表面活性剂,选择碳氢表面活性剂、氟表面活性剂和生物表面活性剂为研究对象,考察其单一体系和复合体系的清洗能力、净水性及其对GF419封孔防腐性能的影响,确定了复合表面活性剂的较佳配比为m (AEC-9Na):m(15-S-9)∶m(FSH)∶m(JBR215)=5∶2∶3∶15.3种表面活性剂复配后显示出良好的协同效应,清洗能力和净水性优异,并使工作液的表面张力显著降低.经该封孔封孔后,镀层的盐雾腐蚀时间达到96 h.","authors":[{"authorName":"吴小明","id":"c7c25569-b087-4b2d-9bd7-aaf0b206b274","originalAuthorName":"吴小明"},{"authorName":"刘宏","id":"22030d4b-1214-4035-b892-1bf5c717a5b7","originalAuthorName":"刘宏"},{"authorName":"吴银丰","id":"8cdeb863-b29b-4a29-b21f-635af90577b0","originalAuthorName":"吴银丰"},{"authorName":"刘倩源","id":"876c6497-f42c-41de-ae46-d2cf8eb927e2","originalAuthorName":"刘倩源"}],"doi":"","fpage":"36","id":"ee932cc4-237c-4c14-b3f5-06dd79efa21f","issue":"8","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"8e574d43-ff13-4b52-bba1-a6187a69f57e","keyword":"金属镀层","originalKeyword":"金属镀层"},{"id":"b31627e7-29d2-4f22-920c-cbdce7924312","keyword":"封孔","originalKeyword":"封孔剂"},{"id":"1b7c3f5a-a32b-4c44-b149-5d4f1ee4e299","keyword":"表面活性剂","originalKeyword":"表面活性剂"},{"id":"37836c86-026e-4b81-80b9-9d11dcf5fb1a","keyword":"协同效应","originalKeyword":"协同效应"},{"id":"eef3ab5a-5541-43d9-9b9d-2290892ab8ec","keyword":"清洗能力","originalKeyword":"清洗能力"},{"id":"fc407c9c-d476-465f-8db6-d69bd4ebd70a","keyword":"净水性","originalKeyword":"净水性"},{"id":"cb5c0460-c622-4bd5-a79c-98bbad73e190","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"ddyts201208010","title":"金属封孔表面活性剂研究","volume":"31","year":"2012"}],"totalpage":6953,"totalrecord":69528}