欢迎登录材料期刊网

材料期刊网

高级检索

应力涨落法是一种研究材料力学性质的有效方法.采用应力涨落法和一种解析方法计算超低温纳米膜的局域弹性常数并分别以Lennard-Jones;(L-J)势和紧束缚势二阶矩(TB-SMA)近似为例,比较了两体势与多体势模型的不同.两种方法的结果都表明膜表面软于内部,而多体势(TB-SMA)模型膜中的次外层是最硬的.对比不同温度下应力涨落方法得到的结果,发现随着温度的升高两种势模型的纳米膜都会变软.

参考文献

[1] Wang JG.;Shi FG.;Zhao B.;Nieh TG.;Kim HK. .Thickness dependence of morphology and mechanical properties of on-wafer low-k PTFE dielectric films[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2000(0):413-417.
[2] Cuenot Stéphane;Frétigny Christian;Demoustier-Champagne Sophie et al.Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microcopy[J].Physical Review B:Condensed Matter,2004,69(16):165410.
[3] Measurement of the elastic constants of textured anisotropic thin films from x-ray diffraction data[J].Applied physics letters,2003(3):473-475.
[4] Philippe Poncharal;Z.L. Wang;Daniel Ugarte .Electrostatic deflections and electromechanical resonances of carbon nanotubes[J].Science,1999(5407):1513-1516.
[5] Size effects on the onset of plastic deformation during nanoindentation of thin films and patterned lines[J].Journal of Applied Physics,2003(9):6050-6058.
[6] Salvadori MC.;Brown IG.;Vaz AR.;Melo LL.;Cattani M. .Measurement of the elastic modulus of nanostructured gold and platinum thin films - art. no. 153404[J].Physical review, B. Condensed matter and materials physics,2003(15):3404-0.
[7] Nilsson SG;Borrise X;Montelius L .Size effect on Young's modulus of thin chromium cantilevers[J].Applied physics letters,2004(16):3555-3557.
[8] Ultrathin single-crystalline-silicon cantilever resonators: Fabrication technology and significant specimen size effect on Young's modulus[J].Applied physics letters,2003(15):3081-3083.
[9] BIN WU;JOHN J.BOLAND;ANDREAS HEIDELBERG .Mechanical properties of ultrahigh-strength gold nanowires[J].Nature materials,2005(7):525-529.
[10] Jinhui Song;Xudong Wang;Elisa Riedo;Zhorig L Wang .Elastic Property of Vertically Aligned Nanowires[J].Nano letters,2005(10):1954-1958.
[11] Ni H;Li XO .Young's modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques[J].Nanotechnology,2006(14):3591-3597.
[12] C. T. Sun;Haitao Zhang .Size-dependent elastic moduli of platelike nanomaterials[J].Journal of Applied Physics,2003(2):1212-1218.
[13] Haitao Zhang;C. T. Sun .Nanoplate Model for Platelike Nanomaterials[J].AIAA journal,2004(10):2002-2009.
[14] Wang Jing;Huang Qing'an;Yu Hong .Young's modulus of silicon nanoplates at finite temperature[J].Applied Surface Science,2008,255:2449.
[15] Aghaei A;Abdolhosseini Qomi M J;Kazemi M T et al.Stability and size-dependency of Cauchy-Bom hypothesis in three-dimensional applications[J].International Journal of Solids and Structures,2009,46(09):1925.
[16] Lu P;He LH;Lee HP;Lu C .Thin plate theory including surface effects[J].International Journal of Solids and Structures,2006(16):4631-4647.
[17] Streitz F H;Sieradzki K;Cammarata R C .Elastic properties of thin fcc films[J].Physical Review B:Condensed Matter,1990,41(17):12285.
[18] Jun Hu;B. C. Pan .Surface effect on the size- and orientation-dependent elastic properties of single-crystal ZnO nanostructures[J].Journal of Applied Physics,2009(3):034302-1-034302-6-0.
[19] Zhou L G;Huang Hanchen .Elastic softening and stiffening of metals surfaces[J].Int J Multiscale Computat Eng,2006,4(01):19.
[20] Gan, Y;Chen, JK .Molecular dynamics study of size, temperature and strain rate effects on mechanical properties of gold nanofilms[J].Applied physics, A. Materials science & processing,2009(2):357-362.
[21] Mi C;Jun S;Kouris DA;Kim SY .Atomistic calculations of interface elastic properties in noncoherent metallic bilayers[J].Physical review, B. Condensed matter and materials physics,2008(7):075425-1-075425-12-0.
[22] Guo JG;Zhao YP .The size-dependent elastic properties of nanofilms with surface effects[J].Journal of Applied Physics,2005(7):4306-1-4306-11-0.
[23] John R Ray .Elastic constants and statistical ensembles in molecular dynamics[J].Computer Phys Reports,1988,8(03):109.
[24] Yoshimoto K;Papakonstantopoulos GJ;Lutsko JF;de Pablo JJ .Statistical calculation of elastic moduli for atomistic models[J].Physical review, B. Condensed matter and materials physics,2005(18):4108-1-4108-6-0.
[25] Van Workum Kevin;De Pablo Juan J .Local elastic constants in thin films of an fcc crystal[J].Physical Review E,2003,67(03):031601.
[26] Cleri Fabrizio;Rosato Vittorio .Tight-binding potentials for transition metals and alloys[J].Physical Review B:Condensed Matter,1993,48(01):22.
[27] Parrinello M;Rahman A .Polymorphic transitions in single crystals:A new molecular dynamics method[J].Journal of Applied Physics,1981,52(12):7182.
[28] Nose Shuichi .A unified formulation of the constant temperature molecular dynamics methods[J].Journal of Chemical Physics,1984,81(01):511.
[29] Segall DE.;Ismail-Beigi S.;Arias TA. .Elasticity of nanometer-sized objects - art. no. 214109[J].Physical Review.B.Condensed Matter,2002(21):4109-0.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%