欢迎登录材料期刊网

材料期刊网

高级检索

声衬是由大量的微孔共振腔按一定规则排列组成,由于微孔共振腔的小尺寸和流动的复杂性,采用实验和理论方法难以观测其内部及附近的复杂流动情况.本文采用计算气动声学方法对不同频率和声强声波入射下的二维微孔共振腔的吸声过程进行了直接数值模拟.结果表明: (1)腔口处粘性耗散和涡脱落现象是其吸声的书要形式;(2)在不同的频率和声强入射下,微孔共振腔的吸声过程表现出三种不同的模式,分别为无涡脱落、规则涡脱落和不规则涡脱落;(3)微孔共振腔的吸声性能在入射波为共振腔固有频率时最好.

参考文献

[1] C. K. W. Tam;K. A. Kurbatskii;K. K. Ahuja;R. J. Gaeta .A NUMERICAL AND EXPERIMENTAL INVESTIGATION OF THE DISSIPATION MECHANISMS OF RESONANT ACOUSTIC LINERS[J].Journal of Sound and Vibration,2001(3):545-557.
[2] Tam CKW;Ju H;Jones MG;Watson WR;Parrott TL .A computational and experimental study of slit resonators[J].Journal of Sound and Vibration,2005(3/5):947-984.
[3] Li XD;Gao JH .Numerical simulation of the generation mechanism of axisymmetric supersonic jet screech tones[J].Physics of fluids,2005(8):5105-1-5105-8-0.
[4] Li X D;Sun X T.Direct Numerical Simulation of Micro-Flow Resonators in the Presence of Grazing Flow[A].北京:清华大学出版社;Springer,2007:662-665.
[5] Tam C K W;Webb J C .Dispersion-Relation-Preserving Finite Difference Schemes for Computational Acoustics[J].Journal of Computational Physics,1993,107:262-281.
[6] Hu F Q;Hussaini M Y;Manthey J L .Low-Dissipation and Low-Dispersion Runge-Kutta Schemes for Computational Acoustics[J].Journal of Computational Physics,1996,124:177-191.
[7] Tam C K W;Dong Z .Wall Boundary Conditions for High-Order Finite-Difference Schemes in Computational Aeroaconstics[J].Theoretical and Computational Fluid Dynamics,1994,8:303-322.
[8] Tam C K W .Advances in Numerical Boundary Condition for Computational Aeroaconstics[J].Journal of Computational Acoustics,1998,6:377-402.
[9] 李晓东,林大楷.阵风与叶栅干涉噪声的数值模拟[J].航空动力学报,2006(01):94-99.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%