{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"微纳结构贝氏体钢由微纳结构贝氏体铁素体和残留奥氏体组成,具有超高强度和高塑性.如何细化块状残留奥氏体并提高薄膜状残留奥氏体含量,来实现精细组织和优良塑韧性,成为重要的科学与技术问题.本文综述了合金元素和热处理工艺等因素对贝氏体转变及其对残留奥氏体形成与形态的影响,分析了残留奥氏体在超高强韧贝氏体钢中的塑韧化机理,从而为开发超高强度高韧性的贝氏体钢提供理论与技术指导.","authors":[{"authorName":"胡锋","id":"f90db416-c984-43f4-b386-0ef5f92ff607","originalAuthorName":"胡锋"},{"authorName":"张国宏","id":"028ff9f8-6d16-41e1-8cdc-238be5c49863","originalAuthorName":"张国宏"},{"authorName":"万响亮","id":"1b7ed191-13ae-4646-afe3-6c538067bfb8","originalAuthorName":"万响亮"},{"authorName":"周雯","id":"8e525dd7-3e31-4b7e-8936-2ed43ecfc62d","originalAuthorName":"周雯"},{"authorName":"吴开明","id":"67d97c7b-e801-402a-84ce-654e7de656f9","originalAuthorName":"吴开明"}],"doi":"","fpage":"15","id":"3861e2e8-a5a1-47b7-bb6b-62aba3245c23","issue":"4","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"3f02ca3e-7e41-403f-a0aa-bdf46187bd99","keyword":"贝氏体钢","originalKeyword":"贝氏体钢"},{"id":"9d199ea7-3ec4-4389-b79b-e2ce8bbdd168","keyword":"残留奥氏体","originalKeyword":"残留奥氏体"},{"id":"850c98d3-a073-48e6-ac3c-89688420d890","keyword":"合金元素","originalKeyword":"合金元素"},{"id":"06435f5a-3f54-407b-a4c0-f9420012dabc","keyword":"热处理","originalKeyword":"热处理"},{"id":"a8a8e685-a266-4a31-9cdf-61c582999478","keyword":"奥氏体稳定性","originalKeyword":"奥氏体稳定性"}],"language":"zh","publisherId":"jsrclxb201704002","title":"微纳结构贝氏体钢中残留奥氏体的调控及其对稳定性的影响","volume":"38","year":"2017"},{"abstractinfo":"利用相逆转变原理采用冷变形使得亚稳奥氏体转变为形变马氏体,采用不同温度和时间退火分别获得纳米晶/超细晶和粗晶奥氏体不锈钢。通过拉伸实验得到不同晶粒尺寸的奥氏体不锈钢力学性能,采用透射电镜观察形变组织结构并利用扫描电镜观察断口特征。结果表明:高屈服强度纳米晶/超细晶奥氏体不锈钢通过形变孪晶获得优良塑性;而低屈服强度的粗晶奥氏体不锈钢发生形变诱导马氏体效应,得到良好的塑性;两组具有不同形变机制的奥氏体不锈钢拉伸断口均为韧性断裂。形变机制由形变孪晶转变为形变诱导马氏体归因于晶粒细化导致奥氏体稳定性大幅度提高。","authors":[{"authorName":"万响亮","id":"7a70f9df-a985-46c1-ae3e-4c0c1be6b746","originalAuthorName":"万响亮"},{"authorName":"李光强","id":"88e22d62-ab27-41fe-b1c3-3bd6b030be38","originalAuthorName":"李光强"},{"authorName":"周博文","id":"16494deb-903c-4122-9bb0-0a57d215a4f1","originalAuthorName":"周博文"},{"authorName":"马江华","id":"93e21b53-564a-49c6-95d2-7592c1cf2215","originalAuthorName":"马江华"}],"doi":"10.11868/j.issn.1001-4381.2016.08.005","fpage":"29","id":"ee23a4e2-eb58-46b8-924b-a29bd0ad36fc","issue":"8","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"2686ab6a-3e7b-4f57-8983-0b387d8b7925","keyword":"奥氏体不锈钢","originalKeyword":"奥氏体不锈钢"},{"id":"793d675e-1197-4d4a-9e9c-29e5f39d3495","keyword":"晶粒细化","originalKeyword":"晶粒细化"},{"id":"cf026a49-1fe1-460f-8434-5d161c6845ad","keyword":"形变机制","originalKeyword":"形变机制"},{"id":"0d9f9376-12ab-4101-96c3-eb623fcad898","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"b856aebd-0fc9-42f2-905c-e1131b8c82c9","keyword":"奥氏体稳定性","originalKeyword":"奥氏体稳定性"}],"language":"zh","publisherId":"clgc201608006","title":"奥氏体不锈钢晶粒细化对形变机制和力学性能的影响","volume":"44","year":"2016"},{"abstractinfo":"对Fe-17Cr-7Ni采用77%冷轧和700℃退火100 s工艺获得纳米晶(<100 nm)/超细晶(100~500 nm)和部分粗晶(>1 μm)组成的微米/纳米复合结构奥氏体组织,其平均晶粒尺寸为500 nm.通过拉伸实验研究了微米/纳米复合结构奥氏体不锈钢力学性能、形变机制和应变硬化行为.结果表明这种微米/纳米复合结构奥氏体不锈钢屈服和抗拉强度分别为939 MPa和1098 MPa,伸长率高达38.8%.分析应变硬化率曲线表明拉伸过程中形变分为四个区间.结合透射电镜组织观察结果,发现形变过程中粗晶奥氏体先转化为形变马氏体,随后纳米晶/超细晶奥氏体转变为形变孪晶,表明这种高强度高塑性微米/纳米复合结构奥氏体不锈钢形变机制为TWIP和TRIP复合形变机制.","authors":[{"authorName":"万响亮","id":"5b7ddcc0-a640-484b-abf7-d8a56dce6fdb","originalAuthorName":"万响亮"},{"authorName":"李光强","id":"f65582a0-82ed-42b9-9f6c-e22a8c408b3e","originalAuthorName":"李光强"},{"authorName":"周博文","id":"92109a07-27b3-455c-bc7a-9db268dc78e1","originalAuthorName":"周博文"},{"authorName":"马江华","id":"53f221ce-30c7-49a1-9160-bd3867300f45","originalAuthorName":"马江华"},{"authorName":"徐光","id":"433d9cfa-17a9-4ce1-baee-05c499c1e40b","originalAuthorName":"徐光"}],"doi":"","fpage":"72","id":"06b78884-17ad-4399-bc29-53b96f4408f3","issue":"11","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"54d19436-0e14-4b06-a8d9-aec3dff328db","keyword":"奥氏体不锈钢","originalKeyword":"奥氏体不锈钢"},{"id":"5743835f-d97b-4a01-9c26-89db26c51f36","keyword":"形变机制","originalKeyword":"形变机制"},{"id":"f5df285f-ad61-4c6c-aaa0-bd6127ab6be0","keyword":"应变硬化","originalKeyword":"应变硬化"},{"id":"0c3f2f3b-2716-4256-8dbd-0d43844506de","keyword":"奥氏体稳定性","originalKeyword":"奥氏体稳定性"}],"language":"zh","publisherId":"jsrclxb201511013","title":"微米/纳米复合结构奥氏体不锈钢形变机理及应变硬化行为","volume":"36","year":"2015"},{"abstractinfo":"利用hermoCalc软件和相关数据库对不同Mn含量(质量分数,以下均同)及添加少量(质量分数,以下均同)Mo和C时,Fe-18Cr-Mn-Mo-C-N合金系在压力为100 kPa条件下随N含量(质量分数,以下均同)变化的垂直截面相图进行了计算.结果发现,当不添加Mo和C时,Mn含量从0增加到12%时,γ/(α+γ)相边界向左侧移动;随着Mn含量的继续增加,γ/(α+γ)相边界又向右侧移动.γ/(Cr2N+γ)、γ/(σ+γ)和γ/(N2+γ)相边界一直向右侧移动.γ/(Cr2N+γ+gas)相平衡时的γ相中氮含量随着Mn的添加也逐渐增加,即由0%Mn时的0.85%N变为22%Mn时的1.69%N,N在γ相中的固溶度提高近一倍.在18%Mn的合金中含有0.02%C时,奥氏体区的范围没有发生明显的变化,但存在M23C6化合物;当继续添加2%Mo时,γ/(α+γ)相边界向右侧移动,而且不但存在M23C6化合物还有M6C化合物.Fe-18Cr-18Mn-0.5N钢的奥氏体化温度及Cr2N相析出温度与此合金系的热力学计算结果基本一致,表明这些计算结果对Fe-18Cr-Mn-Mo-C-N合金系的成分设计及热处理工艺有重要参考价值.","authors":[{"authorName":"任玉平","id":"67aa874d-2195-4b3f-bb02-fabb21115fb3","originalAuthorName":"任玉平"},{"authorName":"李长发","id":"d886bbd5-e105-40ef-b080-fd843afc3453","originalAuthorName":"李长发"},{"authorName":"秦高梧","id":"9029b6ee-b78a-4f6a-8581-6e8b6c41a9b8","originalAuthorName":"秦高梧"},{"authorName":"裴文利","id":"dbae248d-b8dd-40a6-90e6-93827443e364","originalAuthorName":"裴文利"},{"authorName":"李洪晓","id":"db16464d-5a02-4b9a-8958-e098b07c7efb","originalAuthorName":"李洪晓"},{"authorName":"郝士明","id":"04042900-8de9-482a-9ae8-b1b009f90af0","originalAuthorName":"郝士明"}],"doi":"10.3969/j.issn.1671-6620.2011.02.013","fpage":"129","id":"437203d2-662e-4b42-97c1-36c2b52dffd7","issue":"2","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"2490c391-e543-4b61-9c0c-d0b02f4e5d55","keyword":"Fe-18Cr-Mn-Mo-C-N合金系","originalKeyword":"Fe-18Cr-Mn-Mo-C-N合金系"},{"id":"d72f5b00-1d8d-4e35-963a-4556cb2dc1fd","keyword":"热力学计算","originalKeyword":"热力学计算"},{"id":"9847f2ec-3519-4f43-beb0-7afb4ed26940","keyword":"奥氏体稳定性","originalKeyword":"奥氏体稳定性"},{"id":"b53c1967-5a5b-46cf-bd60-7eb0e65dd925","keyword":"合金设计","originalKeyword":"合金设计"}],"language":"zh","publisherId":"clyyjxb201102013","title":"无镍含氮18Cr奥氏体不锈钢中相平衡的热力学计算","volume":"10","year":"2011"},{"abstractinfo":"采用分阶段拉伸、XRD、EBSD、SEM、TEM等实验手段,研究了TRIP钢奥氏体的力学稳定性.结果表明:拉伸变形初期奥氏体转变较快,拉伸变形后期奥氏体转变较慢;奥氏体的含碳量不同,在相同的拉伸变形阶段奥氏体转化率的增加速率不同;处于铁素体、贝氏体晶界或者相界面1um以上大颗粒奥氏体几乎在变形初期就全部发生相变,而晶粒小于1um的残余奥氏体在变形后期发生相变,缓解相界面局部应力集中对TRIP效应有较大贡献;铁素怀晶粒内部奥氏体力学稳定性较好不易发生相变,少量较大的颗粒拉伸后会形成M-A岛.","authors":[{"authorName":"熊自柳","id":"f8caa776-e191-4e5e-99d4-c16c908a4c9a","originalAuthorName":"熊自柳"},{"authorName":"蔡庆伍","id":"c020e946-ff8a-405f-b07b-e3fdc07675ea","originalAuthorName":"蔡庆伍"},{"authorName":"江海涛","id":"d6962706-47dc-40e8-bdbd-1ffda7b127f1","originalAuthorName":"江海涛"},{"authorName":"唐荻","id":"7f0c547e-1094-42f4-a8b4-a57e45b8b09e","originalAuthorName":"唐荻"}],"doi":"10.3969/j.issn.1001-4381.2011.03.003","fpage":"11","id":"0398b60d-1572-4e59-8eae-a97ede5d4f18","issue":"3","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"d75bac47-d1cc-4388-9a22-166c0a7ee65e","keyword":"TRIP钢","originalKeyword":"TRIP钢"},{"id":"d9d07a39-9707-4794-a3b7-5f18e24ee83b","keyword":"奥氏体","originalKeyword":"奥氏体"},{"id":"08fd273b-9c13-4f57-b342-ba1960b19a29","keyword":"力学稳定性","originalKeyword":"力学稳定性"},{"id":"a9114916-3aa9-452c-8764-5f7507e69f27","keyword":"应力诱发马氏体转变","originalKeyword":"应力诱发马氏体转变"},{"id":"6d76e02e-8fca-4ff7-8d28-547c6c2c3844","keyword":"组织特征","originalKeyword":"组织特征"}],"language":"zh","publisherId":"clgc201103003","title":"TRIP钢中奥氏体的力学稳定性研究","volume":"","year":"2011"},{"abstractinfo":"采用X射线衍射(XRD)、透射电镜(TEM)和拉伸实验等方法,研究三种工艺制备的热轧TRIP钢残余奥氏体及其碳含量和稳定性.结果显示:贝氏体区停留时间对残余奥氏体量影响较大,当在贝氏体区模拟卷取时,残余奥氏体量最多;适当的增加弛豫时间,会增加最终组织中残余奥氏体的碳含量;残奥碳含量,还有残余奥氏体的形状和晶粒大小及周围相的影响共同决定了残余奥氏体稳定性.","authors":[{"authorName":"高绪涛","id":"7f152c92-1625-4a5b-9111-1f4517291adb","originalAuthorName":"高绪涛"},{"authorName":"赵爱民","id":"fa62634a-f256-45e9-9dd3-6e5c72debd13","originalAuthorName":"赵爱民"},{"authorName":"赵征志","id":"c4bf2bf5-7e4a-4480-b1d5-33369cd66794","originalAuthorName":"赵征志"},{"authorName":"张明明","id":"53b46307-1a99-417c-adf0-8df37f6e51e8","originalAuthorName":"张明明"},{"authorName":"张宇光","id":"5283b5e0-4b60-4590-b91c-f8f9cb5c901c","originalAuthorName":"张宇光"}],"doi":"10.3969/j.issn.1001-4381.2011.11.009","fpage":"39","id":"874d0324-6c4f-4db8-80ba-ee5db355a291","issue":"11","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"fc5794d1-4558-49c6-9a73-e6ac875f4082","keyword":"热轧TRIP钢","originalKeyword":"热轧TRIP钢"},{"id":"78ddedba-9c28-49fb-a233-d3fc3e8810ef","keyword":"残余奥氏体","originalKeyword":"残余奥氏体"},{"id":"5210427a-cb82-4424-904b-8d3adfa1c9c0","keyword":"残余奥氏体碳含量","originalKeyword":"残余奥氏体碳含量"},{"id":"b97f0153-bf3f-459f-bd7a-b304da077c05","keyword":"残余奥氏体稳定性","originalKeyword":"残余奥氏体稳定性"}],"language":"zh","publisherId":"clgc201111009","title":"热轧TRIP钢残余奥氏体及其稳定性研究","volume":"","year":"2011"},{"abstractinfo":"采用XRD法测定了不同温度回火后9Ni钢中的回转奥氏体含量,并结合显微组织的变化,研究了回转奥氏体的形成规律及其对性能的影响.同时,采用多种方法研究了所形成的回转奥氏体的稳定性.结果显示:540℃回火时,回转奥氏体的生成比较困难;570℃回火后其含量达到4.47%,且稳定性较高;570~600℃之间回火,测得的回转奥氏体缓慢增加,稳定性则逐步降低;600℃以上回火,回转奥氏体快速增加,并在630℃左右达到峰值,但稳定性显著降低;回火温度超过630℃,保温期间生成的奥氏体更多,但稳定性更低,其中很大一部分在水冷过程中又发生相变,使最终测得的回转奥氏体含量又快速降低.结果也表明,通过分析回转奥氏体和基体点阵常数的变化趋势能够更加准确地确定回转奥氏体的稳定性.","authors":[{"authorName":"杨跃辉","id":"4d6affa0-36e7-49e4-a8f5-b1b2d8feb01e","originalAuthorName":"杨跃辉"},{"authorName":"武会宾","id":"f50b49ba-6a30-4cca-9505-f35a78148f2b","originalAuthorName":"武会宾"},{"authorName":"蔡庆伍","id":"f2ffeeab-10df-4d1c-a7e4-d3c2720a7a91","originalAuthorName":"蔡庆伍"},{"authorName":"程莉","id":"3ecf8745-086b-479a-8cf9-8b8d90917945","originalAuthorName":"程莉"}],"doi":"","fpage":"73","id":"dd2b2dd7-24fe-458a-8ad0-6d2aa5cbaf15","issue":"3","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"777914ba-3fb6-4ca1-929a-403d8eb13680","keyword":"9Ni钢","originalKeyword":"9Ni钢"},{"id":"36f27d6d-049b-4190-bb19-668c3b8fe481","keyword":"回火温度","originalKeyword":"回火温度"},{"id":"91f02aa9-2dae-4381-b6c2-6206339320fd","keyword":"回转奥氏体","originalKeyword":"回转奥氏体"},{"id":"ebca75ac-ec4f-4eba-95b4-a3dbd64c845e","keyword":"稳定性","originalKeyword":"稳定性"}],"language":"zh","publisherId":"jsrclxb201003016","title":"9Ni钢中回转奥氏体的形成规律及其稳定性","volume":"31","year":"2010"},{"abstractinfo":"借助金相显微镜、扫描电镜分析能谱,显微硬度仪,通过改变高铬铸铁(Cr15)凝固冷却速率,研究冷速对初生奥氏体稳定性的影响.结果表明:随着冷却速率增加,共晶组织含量先增加后减少,初生奥氏体量呈先减少后增加的趋势演变;初生奥氏体中固溶的C、Cr含量增加,奥氏体的过饱和度增大,当二次碳化物未析出时,初生奥氏体稳定性增加,一旦二次碳化物析出,其稳定性降低;初生奥氏体向马氏体转变数量减少,稳定性增强;共晶奥氏体和初生奥氏体边缘部位不稳定,最先发生A→M转变.","authors":[{"authorName":"马幼平","id":"3a3adfc8-4214-4986-ae1e-8f135d94a651","originalAuthorName":"马幼平"},{"authorName":"党晓明","id":"82f2ab13-1b4d-491e-875c-b10b97d14d5a","originalAuthorName":"党晓明"},{"authorName":"李秀兰","id":"9f596cca-102f-4856-974b-8a1eec3dc41e","originalAuthorName":"李秀兰"},{"authorName":"宋绍峰","id":"0e3b873b-0967-472c-a878-a0a542fd8948","originalAuthorName":"宋绍峰"}],"doi":"33-1331/TJ.20110702.1658","fpage":"17","id":"0648afc9-249e-4c5f-b880-58388e6e6096","issue":"4","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"a340f34b-5e54-4eb4-8ed7-ca3a64ac4cf5","keyword":"冷却速率","originalKeyword":"冷却速率"},{"id":"d0972f20-0e1b-4ec7-9710-9c2ee5d6350c","keyword":"高铬铸铁","originalKeyword":"高铬铸铁"},{"id":"d2c100b2-0599-4744-ac60-fc795688fd95","keyword":"初生奥氏体","originalKeyword":"初生奥氏体"},{"id":"374733e8-21ff-4009-99f4-073ea1152440","keyword":"莱氏体共晶","originalKeyword":"莱氏体共晶"},{"id":"39558e0c-5578-4c78-a8ca-9beaae501f3b","keyword":"组织","originalKeyword":"组织"}],"language":"zh","publisherId":"bqclkxygc201104005","title":"冷却速率对高铬铸铁初生奥氏体稳定性的影响","volume":"00","year":"2011"},{"abstractinfo":"采用预拉伸实验对低硅含铝TRIP钢变形过程中残余奥氏体的演变规律进行研究,建立残余奥氏体变形过程中稳定性与加工硬化指数n之间的对应关系,在此基础上通过设计不同热处理工艺,获得具有不同初始残余奥氏体特性的TRIP钢以及具有不同组织构成的TRIP钢,并分析了TRIP钢的残余奥氏体稳定性.结果表明:TRIP钢中的残余奥氏体随着变形的深入,稳定性逐渐增加;残余奥氏体越稳定,TRIP钢的瞬时加工硬化值越稳定(n值越稳定);随着初始碳含量的增加,残余奥氏体在变形过程中的稳定性也随之提高.在变形过程中,残余奥氏体的稳定性受残余奥氏体碳含量,分布以及周围相等因素的共同影响.","authors":[{"authorName":"定巍","id":"4b5b5708-6e90-41e0-b704-77355447d63a","originalAuthorName":"定巍"},{"authorName":"龚志华","id":"404e5f04-15a6-453a-9e64-779aa5135f35","originalAuthorName":"龚志华"},{"authorName":"唐荻","id":"19da2660-853a-41c4-8fab-f14bfd63076a","originalAuthorName":"唐荻"},{"authorName":"江海涛","id":"cf022e9d-e2d1-497f-bff2-5d1e3ca6bf99","originalAuthorName":"江海涛"},{"authorName":"王宝峰","id":"a9725d06-1ba4-484d-8aa1-21e91d678d91","originalAuthorName":"王宝峰"}],"doi":"10.3969/j.issn.1001-4381.2013.12.013","fpage":"68","id":"2eb4c9bb-3e44-4cc3-a1ec-8225195dc028","issue":"12","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"8d6e4b2e-e6ad-4e5a-a285-c5dec332c9e3","keyword":"TRIP钢","originalKeyword":"TRIP钢"},{"id":"97b21178-d45c-413a-a425-6140c0f0cee2","keyword":"残余奥氏体","originalKeyword":"残余奥氏体"},{"id":"10f3b625-8622-41ee-ac41-59075d1e1c52","keyword":"加工硬化指数","originalKeyword":"加工硬化指数"},{"id":"2c41cab2-9b63-4094-8ead-95e9a32a9ba9","keyword":"微观组织","originalKeyword":"微观组织"}],"language":"zh","publisherId":"clgc201312013","title":"低硅含铝TRIP钢残余奥氏体变形过程中稳定性研究","volume":"","year":"2013"},{"abstractinfo":"采用扫描电镜、透射电镜、X射线衍射仪等对贝氏体等温转变后TRIP钢中的残余奥氏体及其稳定性进行了研究。结果表明,TRIP钢在贝氏体转变区400~440 ℃保温120~300 s,随着等温温度的升高和保温时间的延长,钢中残余奥氏体的含量不断增多,残余奥氏体碳含量呈降低趋势。TRIP钢中的残余奥氏体主要以薄膜状、粗大块状和细小粒状的形态存在。粗大块状的残余奥氏体稳定性最差,薄膜状次之,细小粒状最稳定。残余奥氏体的含量不足,或残余奥氏体的含量偏高造成碳含量的不足,都会导致TRIP钢综合成形性能的降低。此外,贝氏体等温处理时间过长,渗碳体的出现大大降低了残余奥氏体中的碳含量,从而降低了残余奥氏体的稳定性。","authors":[{"authorName":"江海涛","id":"bd2ad229-a9c4-4817-b6c5-df3234684e28","originalAuthorName":"江海涛"},{"authorName":"唐荻","id":"e8d99b70-794c-4017-a4a6-2a409a2210a2","originalAuthorName":"唐荻"},{"authorName":"刘强","id":"5a2eb071-9ba8-4102-b246-813e87dc04b7","originalAuthorName":"刘强"},{"authorName":"刘仁东","id":"a5abfc92-dff5-4e20-883c-9b97fe38f0ee","originalAuthorName":"刘仁东"},{"authorName":"严玲","id":"2ada2874-4f5e-47b8-af49-6097d0e5cffb","originalAuthorName":"严玲"}],"categoryName":"|","doi":"","fpage":"60","id":"3e08bec1-6e98-43fd-a066-b4e35d636fcf","issue":"8","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"d0714d4b-7c5a-4073-9996-55c1d92a6e9f","keyword":"TRIP钢;贝氏体等温处理;残余奥氏体;稳定性","originalKeyword":"TRIP钢;贝氏体等温处理;残余奥氏体;稳定性"}],"language":"zh","publisherId":"0449-749X_2007_8_8","title":"TRIP钢中残余奥氏体及其稳定性的研究","volume":"42","year":"2007"}],"totalpage":2683,"totalrecord":26827}