欢迎登录材料期刊网

材料期刊网

高级检索

采用电弧炉熔炼、球磨结合放电等离子烧结(SPS)的方法合成了系列第Ⅰ类笼状化合物Ba8 Si30 Ga16,研究了样品的晶体结构和热电性能随SPS烧结温度的变化规律.研究结果表明,随着SPS烧结温度由800℃升高到1000℃,Ba8 Si30 Ga16样品的晶格常数由10.5435(4)A减小到10.5274(2)A,Ba8 Si30 Ga16笼上Ga含量的降低可能是导致晶格常数减小的主要原因.样品的Seebeck系数、电导率、热导率、热电优值ZT均受SPS烧结温度的影响.其中,800℃SPS烧结样品的ZT值最大,这与其较低的热导率有关.

参考文献

[1] Shevelkov A;Kovnir K.Zintl clathrates[M].Berlin:Springer Berlin Heidelberg,2011
[2] Biswas K;He J;Blum I D et al.High-performance bulk thermoelectrics with all-scale hierarchical architectures[J].NATURE,2012,489(7416):414.
[3] Nolas GS.;Slack GA.;Schujman SB.;Cohn JL. .Semiconducting Ge clathrates: Promising candidates for thermoelectric applications[J].Applied physics letters,1998(2):178-180.
[4] Nolas G S;Slack G A;Schujman S B .Semiconductor clathrates:A phonon glass electron crystal material with potential for thermoelectric applications[J].SEMICONDUCTORS AND SEMIMETALS,2001,69:255.
[5] Slack G A.Handbook of thermoelectrics[M].Boca Raton:CRC Press,1995
[6] HIROAKI ANNO;MASAHIRO HOKAZONO;RITSUKO SHIRATAKI;YUKO NAGAMI .Crystallographic, Thermoelectric, and Mechanical Properties of Polycrystalline Ba_8Al_xSi_(46-x) Clathrates[J].Journal of Electronic Materials,2013(7):2326-2336.
[7] Anno H;Yamada H;Nakabayashi T et al.Influence of preparation conditions on thermoelectric properties of Ba8Ga16 Si30 clathrate by combining arc melting and spark plasma sintering methods[J].J Phys:Conf Series,2012,379(01):012007.
[8] Bentien A;Nishibori E;Paschen S et al.Crystal structures,atomic vibration,and disorder of the type-Ⅰ thermoelectric clathrates Ba8Ga16 Si30,Ba8Ga16 Ge30,Ba8In16 Ge30,and Sr8Ga16Ge30[J].Physical Review B:Condensed Matter,2005,71(14):4107.
[9] Christensen M;Iversen BB .Host structure engineering in thermoelectric clathrates[J].Chemistry of Materials: A Publication of the American Chemistry Society,2007(20):4896-4905.
[10] Kuznetsov V L;Kuznetsova L A;Kaliazin A E et al.Preparation thermoelectric properties of A8 Ⅱ B16 Ⅲ B30 Ⅳ clathrate compounds[J].Journal of Applied Physics,2000,87(11):7871.
[11] Li, Z.;Tang, J.;Nishino, T.;Sato, K.;Wang, Y.;Tanigaki, K. .Carrier control in Ba_8Ga_(16)Ge_(30) single crystals[J].Physica, C. Superconductivity and its applications,2010(Suppl.):S616-S618.
[12] Norihiko L. Okamoto;Kyosuke Kishida;Katsushi Tanaka;Haruyuki Inui .Crystal structure and thermoelectric properties of type-Ⅰ clathrate compounds in the Ba-Ga-Ge system[J].Journal of Applied Physics,2006(7):073504.1-073504.10.
[13] Gatti C;Bertini L;Blake N P et al.Guest-framework interaction in type Ⅰ inorganic clathrates with promising thermoelectric properties:On the ionic versus neutral nature of the alkaline-earth metal guest A in A8 Ga16 Ge30 (A=Sr,Ba)[J].Chemistry-A European Journal,2003,9(18):4556.
[14] Anno, H.;Yamada, H.;Nakabayashi, T.;Hokazono, M.;Shirataki, R..Gallium composition dependence of crystallographic and thermoelectric properties in polycrystalline type-I Ba _8Ga _xSi _(46-x) (nominal x=14-18) clathrates prepared by combining arc melting and spark plasma sintering methods (Conference Paper)[J].Journal of Solid State Chemistry,2012:94-104.
[15] Li Y;Zhang RH;Liu Y;Chen N;Luo ZP;Ma XQ;Cao GH;Feng ZS;Hu CR;Ross JH .Superconductivity in gallium-substituted Ba8Si46 clathrates[J].Physical review, B. Condensed matter and materials physics,2007(5):4513-1-4513-8-0.
[16] Yan, X.;Bauer, E.;Rogl, P.;Paschen, S. .Structural and thermoelectric properties of Ba_8Cu _5Si_xGe_(41-x) clathrates[J].Physical review, B. Condensed matter and materials physics,2013(11):115206-1-115206-9.
[17] Hui Zhang;Jing-Tai Zhao;Mei-Bo Tang;Zhen-Yong Man;Hao-Hong Chen;Xin-Xin Yang .Structure and low-temperature properties of Ba8Ni6Ge40[J].The journal of physics and chemistry of solids,2009(2):312-315.
[18] Li Y.;Chi J.;Gou WP.;Khandekar S.;Ross JH. .Structure and stability of Ba-Cu-Ge type-I clathrates[J].Journal of Physics. Condensed Matter,2003(32):5535-5542.
[19] Saiga Y;Du B;Deng S K et al.Thermoelectric properties of type-Ⅷ clathrate Ba8Ga16Sn30 doped with Cu[J].Journal of Alloys and Compounds,2012,537:303.
[20] Sales B;Chakoumakos B;Jin R .Structural,magnetic,thermal,and transport properties of X8Ga16 Ge30 (X=Eu,Sr,Ba) single crystals[J].Physical Review B:Condensed Matter,2001,63(24):245113.
[21] Yuegang Zhang;Peter L. Lee;George. S. Nolas;Angus P. Wilkinson .Gallium distribution in the clathrates Sr_(8)Ga_(16)Ge_(30) and Sr_(4)Eu_(4)Ga_(16)Ge_(30) by resonant diffraction[J].Applied physics letters,2002(16):2931-2933.
[22] Deng S K;Tang X F;Tang R S .Synthesis and high temperature thermoelectric transport properties of Si-based type-Ⅰ clathrates[J].Chinese Phys B,2009,18(07):3084.
[23] Shirataki R;Hokazono M;Nakabayashi T et al.Preparation and characterization of planetary ball milled Si-based clathrates and their spark plasma sintered materials[J].Material Science and Engineering,2011,18(14):142012.
[24] Larsen A C;Von Dreele R B .General structure analysis system (GSAS)[R].New Mexico:Los Alamos National Laboratory,1994.
[25] D. Cederkrantz;A. Saramat;G. J. Snyder;A. E. C. Palmqvist .Thermal stability and thermoelectric properties of p-type Ba_(8)Ga_(16)Ge_(30) clathrates[J].Journal of Applied Physics,2009(7):074509-1-074509-7.
[26] Tsujii, N.;Roudebush, J.H.;Zevalkink, A.;Cox-Uvarov, C.A.;Jeffery Snyder, G.;Kauzlarich, S.M. .Phase stability and chemical composition dependence of the thermoelectric properties of the type-I clathrate Ba_8Al_xSi_(46-x) (8≤x≤15)[J].Journal of Solid State Chemistry,2011(5):1293-1303.
[27] Nick P.Blacke;Dan Bryan;Susan Lattuner;Lone Mollnitz .Structure and stability of the clathrates Ba_8Ga_(16)Ge-(30),Sr_8Ga_(16)Ge_(30),Ba_8Ga_(16)Si_(30),and Ba_8In_(16)Sn_(30)[J].The Journal of Chemical Physics,2001(22):10063-10074.
[28] Cohn JL.;Fessatidis V.;Metcalf TH.;Slack GA.;Nolas GS. .Glasslike heat conduction in high-mobility crystalline semiconductors[J].Physical review letters,1999(4):779-782.
[29] Dubois F;Fassler T .Ordering of vacancies in type-Ⅰ tin clathrate:Superstructure of Rb8Sn44 □2[J].Journal of the American Chemical Society,2004,127(10):3264.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%