催化学报 , 2006, 27(10): 875-879.
谷胱甘肽过氧化物酶模拟物碲化透明质酸的合成及催化动力学研究
张博旬 1, , 陈智博 2, {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"为研究氧气浓度对绝缘材料直流老化过程的影响,将低密度聚乙烯(LDPE)置于纯氮气、空气、纯氧气3种不同的氧气浓度气氛下进行直流老化,并利用电声脉冲法测量LDPE老化试样的空间电荷特性.结果表明:100 h直流老化条件下更高的氧气浓度可以降低陷阱平均深度,提高空间电荷迁移率.测量老化100 h后试样的电特性,发现高氧气浓度能够增大试样的体积电阻率和正极性直流击穿电压,且随着氧气浓度的增大,击穿电压呈U形击穿特性.","authors":[{"authorName":"周远翔","id":"bc7663c4-560c-4a95-a4eb-65fdf6a0ca41","originalAuthorName":"周远翔"},{"authorName":"黄建文","id":"8d1fdbb6-c98b-4234-8d2a-6850103835fc","originalAuthorName":"黄建文"},{"authorName":"张灵","id":"34f8274f-a470-47f4-9305-f8541641e1fd","originalAuthorName":"张灵"},{"authorName":"王云杉","id":"11b92c40-6457-469b-9c2d-ee09d5cd71b3","originalAuthorName":"王云杉"},{"authorName":"黄猛","id":"096b98bd-33cc-48ff-9162-3bb5c4326b03","originalAuthorName":"黄猛"}],"doi":"","fpage":"38","id":"7ee41d49-f1fa-4458-a494-5a926ad78fb9","issue":"6","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"2213205a-e872-47b3-9ede-990ab477612b","keyword":"氧气浓度","originalKeyword":"氧气浓度"},{"id":"a960d773-a626-4ba4-a3d6-b1214dbd2880","keyword":"低密度聚乙烯","originalKeyword":"低密度聚乙烯"},{"id":"9112f485-786f-4b00-a5f3-43313c187600","keyword":"直流老化","originalKeyword":"直流老化"},{"id":"e40e536f-eb31-4952-856d-bb5de8937d1d","keyword":"电气特性","originalKeyword":"电气特性"}],"language":"zh","publisherId":"jycltx201206011","title":"氧气浓度对低密度聚乙烯直流老化电特性的影响","volume":"","year":"2012"},{"abstractinfo":"本文通过检测背景气体不同含氧量和相对湿度下的放电电流强度和臭氧浓度,分析氧气和水汽对滑动弧放电特性的影响.结果表明,背景中氧气是臭氧的主要发生源,臭氧随氧气浓度的增大而增大.水汽的离解反应与臭氧发生反应存在竞争关系,同时其生成的OH粒子会与臭氧发生反应,因此水汽对臭氧的产生起抑制作用.由于氧气和水的电子结合系数都很高,水与电子还会发生离解结合反应,因此背景气体氧气浓度和水汽含量增大会减少等离子体区域的电子数量,降低放电电流强度.","authors":[{"authorName":"李晓东","id":"b4eb47da-b568-4b25-8bde-7b4b00f173aa","originalAuthorName":"李晓东"},{"authorName":"薄拯","id":"7bbb996d-04c9-46e7-b639-6993bdecc6cb","originalAuthorName":"薄拯"},{"authorName":"严建华","id":"f153843e-6189-4dd5-ad93-301cbf891b02","originalAuthorName":"严建华"},{"authorName":"杜长明","id":"8d4d92f9-025e-435d-bbe9-5436e2892dd0","originalAuthorName":"杜长明"},{"authorName":"池涌","id":"2a1c0f25-49ff-494b-92f9-b74d8f84d602","originalAuthorName":"池涌"},{"authorName":"岑可法","id":"88104dbe-c675-4d8c-b0ff-d6ceb9a5f786","originalAuthorName":"岑可法"}],"doi":"","fpage":"537","id":"ed40a7c9-4aca-403d-a0a3-18643c8d7bde","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"1d41abaf-d62d-4643-a7fb-5a0dbd91baaf","keyword":"滑动弧放电","originalKeyword":"滑动弧放电"},{"id":"dcc10509-2b89-498b-a512-5c07213d926e","keyword":"相对湿度","originalKeyword":"相对湿度"},{"id":"5490a08b-47f2-47df-80af-1d765d34fce1","keyword":"氧气浓度","originalKeyword":"氧气浓度"},{"id":"20bc0290-0183-4b70-aca3-7b02dce94871","keyword":"电流","originalKeyword":"电流"},{"id":"18210228-93e8-4546-a462-ba0962825ce8","keyword":"臭氧浓度","originalKeyword":"臭氧浓度"}],"language":"zh","publisherId":"gcrwlxb200703056","title":"相对湿度和氧气浓度对滑动弧放电特性影响研究","volume":"28","year":"2007"},{"abstractinfo":"建立了一个描述土壤中热、湿、气耦合迁移的数学模型,对有冬小麦生长的圆柱形土壤床中的氧气浓度场进行了数值模拟.结果表明,土壤床中的氧气浓度场与冬小麦的生长发育阶段、土壤的孔隙率以及土壤床的高度等因素密切相关.","authors":[{"authorName":"范爱武","id":"997232d3-f529-4607-bee3-07cf19320294","originalAuthorName":"范爱武"},{"authorName":"刘伟","id":"9967873d-79ea-475e-bbf9-c547348f1da6","originalAuthorName":"刘伟"},{"authorName":"刘炳成","id":"a98d49da-441f-4d7d-986e-984fb75963cf","originalAuthorName":"刘炳成"}],"doi":"","fpage":"97","id":"c5afae99-29e1-4570-b32d-e13658684808","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"7fd52ed8-51ea-46a2-b31f-99586d3bdf82","keyword":"冬小麦","originalKeyword":"冬小麦"},{"id":"24d4e57c-21b3-467b-a1b1-1e3bf6c33cee","keyword":"土壤床","originalKeyword":"土壤床"},{"id":"7de3a412-3d64-4ddd-a159-f539a9e7c598","keyword":"氧气浓度","originalKeyword":"氧气浓度"},{"id":"5d2adb92-5668-4fb6-bcfc-2b31498aace7","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb200301030","title":"作物生长的土壤中氧气浓度场的稳态数值模拟","volume":"24","year":"2003"},{"abstractinfo":"油品储罐中的H2S气体在没有O2存在的室温条件下能与储罐内壁铁的主要腐蚀产物Fe2O3发生化学反应生成铁的硫化物(以FeS为主).铁的硫化物氧化放热是引起含硫油品储罐着火的主要原因.通过实验绘制出在不同起始氧气浓度下的Fe2O3的硫化产物氧化升温曲线和耗氧速度曲线,继而分析了氧气浓度对铁的硫化物自燃性的影响,氧气浓度越大,铁的硫化物自燃性越强.并且通过对耗氧速度的分析,可以了解铁的硫化物氧化反应速度的变化.","authors":[{"authorName":"万鑫","id":"8818b82a-1e14-43f4-86de-e9719e3cb234","originalAuthorName":"万鑫"},{"authorName":"赵杉林","id":"c73524e3-dbe1-4603-b968-7db56a517c12","originalAuthorName":"赵杉林"},{"authorName":"李萍","id":"da7ac234-9311-4dad-b6a5-1f61ea42427a","originalAuthorName":"李萍"},{"authorName":"张振华","id":"1efd4c03-5d18-40cd-bc2e-9e0f9ca59d9c","originalAuthorName":"张振华"}],"doi":"10.3969/j.issn.1005-748X.2005.12.003","fpage":"512","id":"b21de4cf-0741-45c7-b2e0-f9d199787e61","issue":"12","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"a32a848e-661d-45ab-b9a5-54547c71cf8b","keyword":"氧气浓度","originalKeyword":"氧气浓度"},{"id":"fd93ae71-d747-4ec1-be46-2af13ece847d","keyword":"硫化物","originalKeyword":"硫化物"},{"id":"24667087-4bd8-44e4-8a62-c4730b5a704b","keyword":"自燃性","originalKeyword":"自燃性"},{"id":"34929927-a2e9-4cc8-babd-1e5e023b00e2","keyword":"耗氧速度","originalKeyword":"耗氧速度"}],"language":"zh","publisherId":"fsyfh200512003","title":"氧气浓度对铁的硫化物自燃性的影响","volume":"26","year":"2005"},{"abstractinfo":"利用TG-FTIR系统,分析了污泥在升温过程中的质量变化,以及氧气浓度对失重过程和气体释放的影响.研究结果表明:污泥的失重过程可分为四个阶段,即水分蒸发-有机质挥发和分解-有机质分解和燃烧-碳燃烧;氧气浓度越大,有机质挥发和分解速率越大;本次实验中氧气浓度为17.65%的气氛下,污泥中有机质能够完全分解或燃烧,释放的气体量最大;在氧气浓度为6.67%和12.65%的气氛下,污泥中的部分有机物并不能完全分解和燃烧.","authors":[{"authorName":"范海宏","id":"6697c6bb-5650-42ea-913d-32b4184030f8","originalAuthorName":"范海宏"},{"authorName":"王为民","id":"0a3e9390-f0a4-4545-a517-93ca232129c7","originalAuthorName":"王为民"},{"authorName":"李斌斌","id":"eb92a559-621a-4d12-ba20-dccf2448fbfe","originalAuthorName":"李斌斌"},{"authorName":"杨爱武","id":"0361f4c5-d614-4271-8eab-8b4b2c04db2e","originalAuthorName":"杨爱武"}],"doi":"","fpage":"858","id":"879c75bd-4a10-4900-9b74-3115cf0909a9","issue":"4","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"48bbe2b2-2568-4b8b-acfa-6dce0302342b","keyword":"TG-FTIR","originalKeyword":"TG-FTIR"},{"id":"39d38c1c-4c74-438d-b8e2-72aac40e77e6","keyword":"干化焚烧","originalKeyword":"干化焚烧"},{"id":"79d3d476-4873-4954-a4b9-22fafc28f8ab","keyword":"失重","originalKeyword":"失重"}],"language":"zh","publisherId":"gsytb201404030","title":"利用TG-FTIR系统研究氧气浓度对污泥干化焚烧的影响","volume":"33","year":"2014"},{"abstractinfo":"在燃烧室高度6000 mm、直径140 mm、热功率0 15 MW的循环流化床燃烧试验系统上,研究煤在40%以上氧气浓度中的燃烧特性。试验结果表明,循环流化床在O2/N2气氛下、平均氧气浓度48.8%~52.3%范围内,可以实现普通烟煤的稳定燃烧;通过优化试验参数,煤的燃烧效率达到95.6%;物料循环量为404 kg/h,循环倍率为17.6。","authors":[{"authorName":"段翠九","id":"ed440d6c-9f47-4544-9b1d-f0999abf27f2","originalAuthorName":"段翠九"},{"authorName":"赵科","id":"e8b62afd-9315-4110-b466-b6704870bc69","originalAuthorName":"赵科"},{"authorName":"谭力","id":"0e2efab7-af96-40fa-be46-d310d76e33a9","originalAuthorName":"谭力"},{"authorName":"吕清刚","id":"da61abea-3920-496e-b2f6-f6ac99557c06","originalAuthorName":"吕清刚"}],"doi":"","fpage":"873","id":"b0d6c931-d58d-4d72-aee6-e567cc1041cc","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"b3af32ec-5e71-46ec-af6c-dc608185c9c0","keyword":"循环流化床","originalKeyword":"循环流化床"},{"id":"e3bae4c9-3c55-4db0-b1f2-feae2a6a607a","keyword":"燃烧","originalKeyword":"燃烧"},{"id":"c7db7db2-b00a-4b4e-b526-069b46ca3889","keyword":"煤","originalKeyword":"煤"},{"id":"dea553ca-1bba-4486-91f4-34dfcf4f1a7d","keyword":"高氧气浓度","originalKeyword":"高氧气浓度"}],"language":"zh","publisherId":"gcrwlxb201205036","title":"循环流化床高氧气浓度下的煤燃烧试验","volume":"33","year":"2012"},{"abstractinfo":"为了较准确地预报炉内煤粉燃烧速率,正确区分TGA中滞止煤粉表面与炉内载流煤粉表面氧气浓度的变化规律是非常关键的.从TGA中非稳态条件下坩埚内颗粒表面氧气浓度分布的数理解知,煤样的氧化过程是同时进行的,只是上部的氧化速率大一些,底部的氧化速率小一些;同一样品,同一升温速率,试样的堆积厚度的差异,会影响实验结果的重复性.分析表明,在初始和反应结束时,坩埚内颗粒表面氧气浓度等于环境浓度;反应速率达到最大值时,颗粒表面氧气浓度达到最小值.颗粒在炉内流动燃烧过程中,环境中氧气浓度值是单调减少的,煤焦表面氧的浓度是非线性变化的.","authors":[{"authorName":"傅培舫","id":"a3a30736-e649-4819-a608-9295deb3fc2b","originalAuthorName":"傅培舫"},{"authorName":"方庆艳","id":"7164106b-950f-49a2-a4ec-892379839cb5","originalAuthorName":"方庆艳"},{"authorName":"周怀春","id":"ce775318-3d42-4953-8dcf-ada02a672a97","originalAuthorName":"周怀春"}],"doi":"","fpage":"701","id":"2e5627fa-9d67-4459-ae32-968aa91ce126","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"2f13062c-a006-4e35-8365-019af22ae213","keyword":"煤粉燃烧","originalKeyword":"煤粉燃烧"},{"id":"f599fed9-9ba6-416c-a948-38e730bc2eae","keyword":"非稳态传质","originalKeyword":"非稳态传质"},{"id":"e082c31b-cbca-4c78-b108-58880c741cc4","keyword":"浓度分布","originalKeyword":"浓度分布"},{"id":"5859feb5-2682-4099-b144-2b6a72ac3fd9","keyword":"TGA","originalKeyword":"TGA"}],"language":"zh","publisherId":"gcrwlxb200504049","title":"基于简单碰撞理论煤粉燃烧动力学模型的研究--PART Ⅱ:颗粒表面的氧气浓度分布模型","volume":"26","year":"2005"},{"abstractinfo":"对氧气高炉进行了数值模拟,数值模拟结果表明氧气高炉炉顶煤气循环利用,可以降低燃料消耗5%左右,炉顶煤气CO2进行储存及资源化利用,可以减少CO2排放56%以上.通过分析氧气高炉的工业化试验情况,说明氧气高炉要实现低成本生产,尚需要解决高效喷吹及全流程优化控制技术,循环煤气加热技术,炉顶煤气CO2脱除技术和CO2储存及资源化利用技术四个关键问题,同时为发展氧气高炉炼铁新工艺提出建议.","authors":[{"authorName":"高建军","id":"d4bbdeb7-6d02-4d05-bc62-3e02c22854e6","originalAuthorName":"高建军"},{"authorName":"齐渊洪","id":"7287179b-dfd5-4659-8a05-c6c51fb63c22","originalAuthorName":"齐渊洪"},{"authorName":"周渝生","id":"aee30491-698a-448c-a3a1-a13b10fc924d","originalAuthorName":"周渝生"},{"authorName":"严定鎏","id":"4a06a054-58fa-43cd-8e2a-fbacf43c5300","originalAuthorName":"严定鎏"}],"doi":"","fpage":"40","id":"18bb7d06-1322-4f80-acab-c2f5c2e8bf29","issue":"2","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"2a3f1a72-ac21-4f00-a328-9b8c73100d26","keyword":"氧气高炉","originalKeyword":"氧气高炉"},{"id":"adc898c0-557b-4b39-8a84-7baa0e31ead3","keyword":"炉顶煤气","originalKeyword":"炉顶煤气"},{"id":"6a551f3a-9dc0-4a4f-a4d5-fc1db6688c20","keyword":"CO2","originalKeyword":"CO2"},{"id":"be59da14-2317-486f-9ca3-7f341bb8abaa","keyword":"高效喷吹","originalKeyword":"高效喷吹"},{"id":"a67e35e0-5e41-4124-be35-737502d31943","keyword":"降低燃料消耗","originalKeyword":"降低燃料消耗"}],"language":"zh","publisherId":"gtft201202008","title":"氧气高炉炼铁技术分析","volume":"33","year":"2012"},{"abstractinfo":" 为探究水分和氧气对油纸绝缘老化过程的影响机理,通过设计不同水分和氧气含量的矿物油纸绝缘在不同温度下的加速热老化试验,测量其绝缘纸聚合度和油中糠醛浓度,并验证了水分、氧气影响因素条件下聚合度变化对二阶动力学模型参数的影响。结果表明:水分和氧气对油纸绝缘加速老化作用明显;水分含量较低时,水分和氧气有相互抑制作用,油中氧气会阻止水分和纤维素相互作用,并且随着氧气含量的增加其作用越来越明显,从而降低绝缘纸的老化速率;水分和氧气含量及绝缘纸类型会影响老化过程中糠醛的变化趋势。","authors":[{"authorName":"隋彬","id":"62fd513e-e741-4c53-bcd6-08db4dcdd98c","originalAuthorName":"隋彬"},{"authorName":"李延涛","id":"6ca8e4d0-d4ce-4ba7-a15c-3f17f111d4a3","originalAuthorName":"李延涛"},{"authorName":"吴广宁","id":"3c6728b2-b1d9-40e4-bdc1-11797d1af1a7","originalAuthorName":"吴广宁"},{"authorName":"李先浪","id":"b11622f2-b647-4ba7-b466-2d1c1e87e195","originalAuthorName":"李先浪"},{"authorName":"卢剑","id":"bda302c9-6844-49ea-a96d-419b60f29f27","originalAuthorName":"卢剑"},{"authorName":"李伟","id":"2b28289a-6210-4c59-846e-b863bd0f34ad","originalAuthorName":"李伟"}],"doi":"","fpage":"43","id":"13f947e3-9e9c-4041-b279-5c9d3d784339","issue":"4","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"d0561a31-ba50-41c3-984b-aefb32453e60","keyword":"油纸绝缘","originalKeyword":"油纸绝缘"},{"id":"82d6dd4e-eaaa-40e0-9895-b311885a421d","keyword":"水分含量","originalKeyword":"水分含量"},{"id":"a1fba61f-92ae-45f5-8a63-0de379c49ff6","keyword":"氧气","originalKeyword":"氧气"},{"id":"6a152893-69f0-47da-a2fd-57c0af0fb90f","keyword":"聚合度","originalKeyword":"聚合度"},{"id":"3340a134-9371-4110-9e4f-3242278f486a","keyword":"糠醛","originalKeyword":"糠醛"}],"language":"zh","publisherId":"jycltx201304012","title":"水分和氧气对油纸绝缘老化的影响","volume":"","year":"2013"},{"abstractinfo":"氧气底吹炉是一种类似诺兰达炉的卧式旋转反应器,但富氧空气从炉体底部喷入熔体.通过分析底吹熔炼特性,提出了氧气底吹炼铜机理.在机理模型中,底吹炉内由上到下分成7个功能层,分别是烟气层、矿料分解过渡层、渣层、造渣过渡层、造锍过渡层、弱氧化层和强氧化层;沿轴线方向分成3个功能区,分别是反应区、分离过渡区、液相澄清区.模型中所有的层和区分别具有不同的作用.氧气底吹熔炼过程处于非稳态的近似多相平衡状态,且炉内不同空间位点的氧势、硫势呈梯度变化;通过合理控制不同层、区的氧势、硫势,可进一步提高氧气底吹炉的熔炼能力.","authors":[{"authorName":"王亲猛","id":"cdf8f53b-01a3-4352-8655-4fecbc198c28","originalAuthorName":"王亲猛"},{"authorName":"郭学益","id":"435e3dc0-a1d4-4818-9670-bb6520647eae","originalAuthorName":"郭学益"},{"authorName":"田庆华","id":"148df3b4-0416-4f68-8e35-4b7b1bbdb660","originalAuthorName":"田庆华"}],"doi":"10.1016/S1003-6326(17)60110-9","fpage":"946","id":"01436900-4593-4214-a11f-a0628d69e643","issue":"4","journal":{"abbrevTitle":"ZGYSJSXBEN","coverImgSrc":"journal/img/cover/ZGYSJSXBEN.jpg","id":"757390d2-7d95-4517-96f1-e467ce1bff63","issnPpub":"1003-6326","publisherId":"ZGYSJSXBEN","title":"中国有色金属学报(英文版)"},"keywords":[{"id":"f2e448f9-e279-4b8d-b2bf-1a0682f757b1","keyword":"氧气底吹炼铜","originalKeyword":"氧气底吹炼铜"},{"id":"6c057c36-d2b0-46d8-9ac9-ed8ceac9847d","keyword":"机理","originalKeyword":"机理"},{"id":"5e4567a1-d288-4ddd-ab4a-e2d75f97cf83","keyword":"多相平衡","originalKeyword":"多相平衡"},{"id":"a65138c4-ca52-49bf-9f93-290c0e65bdef","keyword":"氧势","originalKeyword":"氧势"},{"id":"610e392a-2886-4e11-a479-e7e586c7fa93","keyword":"硫势","originalKeyword":"硫势"},{"id":"e60c8970-2640-4159-b756-42f25968135d","keyword":"SKS工艺","originalKeyword":"SKS工艺"}],"language":"zh","publisherId":"zgysjsxb-e201704027","title":"氧气底吹炼铜机理","volume":"27","year":"2017"}],"totalpage":1710,"totalrecord":17098}