在低质量流速和高热流密度下,对复杂结构微流体芯片中的流动沸腾进行了瞬态流型研究,发现了毫秒级微时间尺度的周期性流型和微通道中的分层流.在单个微通道区域,液膜沿流动方向逐渐增厚且蒸干总是首先发生在其上游区域,而在不同微通道区域间,下游微通道首先蒸干.分析表明,液相弗劳德数(Froude number)较低是微通道中分层流存在的原因.高沸腾数(Boiling number)引起汽液界面较大的剪切应力从而使液体不断向微通道出口处聚集,引起液膜厚度沿流动方向逐渐增厚.
参考文献
[1] | 甘云华,徐进良,周继军,陈勇.微尺度相变传热的关键问题[J].力学进展,2004(03):399-407. |
[2] | H.Y. Wu;Ping Cheng .Visualization and measurements of periodic boiling in silicon microchannels[J].International Journal of Heat and Mass Transfer,2003(14):2603-2614. |
[3] | Xu JL;Gan YH;Zhang DC;Li XH .Microscale boiling heat transfer in a micro-timescale at high heat fluxes[J].Journal of Micromechanics and Microengineering,2005(2):362-376. |
[4] | John R. Thome .Boiling in microchannels: a review of experiment and theory[J].International journal of heat and fluid flow,2004(2):128-139. |
[5] | Hetsroni G;Mosyak A;Pogrebnyak E;Segal Z .Explosive boiling of water in parallel micro-channels[J].International Journal of Multiphase Flow,2005(4):371-392. |
[6] | Kandlikar S G .Heat Transfer Mechanisms During Flow Boiling in Microchannels[J].Journal of Heat Transfer,2004,126(01):8-16. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%