欢迎登录材料期刊网

材料期刊网

高级检索

激光冲击强化是一种新型表面强化技术,能够在材料表层产生残余压应力,提高结构件的疲劳强度、表面硬度,延长其疲劳寿命,在钛合金结构件中应用前景广阔。介绍了激光冲击强化的基本原理和特点,并结合国外研究现状,着重分析了我国钛合金激光冲击强化技术在工艺基础研究以及提高疲劳强度、改善焊缝应力状态、表面纳米化、强化孔结构、修复及再制造受损件等方面的研究现状,并指出了该技术在钛合金工程化应用方面需解决的关键问题。

Laser shock peening ( LSP ) is a novel surface treatment technique which is capable of introducing compressive residual stress near the surface layers of the materials , then the fatigue properties and surface strength of the alloy can be improved largely .In this paper , the basic principle and characterization of LSP was introduced , the research situation of the LSP in the field of fatigue strength , improve the stress state of welding seam , nanocrystalline , pore structure strengthening , repair and remanufacturing were analyzed deeply .Finally , the key problems that needed resolved for the engineering application of LSP in titanium alloys were pointed out .

参考文献

[1] Y.K. Gao;X.R. Wu.Experimental investigation and fatigue life prediction for 7475-T7351 aluminum alloy with and without shot peening-induced residual stresses[J].Acta materialia,20119(9):3737-3747.
[2] Xianqian Wu;Chenguang Huang;Xi Wang;Hongwei Song.A new effective method to estimate the effect of laser shock peening[J].International journal of impact engineering,20115(5):322-329.
[3] X.C. Zhang;Y.K. Zhang;J.Z. Lu;F.Z. Xuan;Z.D. Wang;S.T. Tu.Improvement of fatigue life of Ti–6Al–4V alloy by laser shock peening[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,201015(15):3411-3415.
[4] 张兴权;周建忠;王广龙;张永康.激光喷丸技术及其应用[J].制造业自动化,2005(10):26-28.
[5] 李启鹏;李伟;杨磊;王学德.航空用钛合金抗微动疲劳表面改性技术的研究进展[J].机械工程材料,2012(11):9-13.
[6] S. Spanrad;J. Tong.Characterisation of foreign object damage (FOD) and early fatigue crack growth in laser shock peened Ti–6Al–4V aerofoil specimens[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20114/5(4/5):2128-2136.
[7] Weiju Jia;Quan Hong;Hengzhang Zhao;Lei Li;Dong Han.Effect of laser shock peening on the mechanical properties of a near-a titanium alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2014:354-359.
[8] A. W. Warren;Y. B. Guo;S. C. Chen.Massive parallel laser shock peening: Simulation, analysis, and validation[J].International Journal of Fatigue,20081(1):188-197.
[9] 赵恒章;杨英丽;洪权;冯亮;奚正平.激光冲击强化技术研究及其在钛合金中的应用[J].钛工业进展,2011(6):34-38.
[10] 王健;邹世坤.激光冲击处理技术的应用研究[J].应用激光,2002(2):223-226.
[11] 周建忠;刘会霞;冯爱新;杨超君;王广龙;张兴权;张永康.激光冲击波技术用于材料加工的研究进展[J].应用激光,2005(1):27-31,44.
[12] 毕凤琴;张春成;李红翠;赵正卫;李芳.激光冲击强化技术的发展及应用[J].兵器材料科学与工程,2010(1):101-104.
[13] 邹世坤.激光冲击处理在航空工业中的应用[J].航空制造技术,2006(05):36-38.
[14] 王健;邹世坤;谭永生.激光冲击处理技术在发动机上的应用[J].应用激光,2005(1):32-34.
[15] 乔红超;赵吉宾;于彦凤.TC4钛合金激光冲击强化参数及性能分析[J].激光与光电子学进展,2013(4):139-144.
[16] 罗新民;赵广志;张永康;陈康敏;罗开玉;任旭东.Ti-6Al-4V激光冲击强化及其微结构响应分析[J].金属学报,2012(9):1116-1122.
[17] 任旭东;张永康;周建忠;马壮.航空钛合金的激光冲击研究[J].华中科技大学学报(自然科学版),2007(z1):150-152.
[18] 李靖;李军;何卫锋;李玉琴;聂祥樊;何光宇.TC17钛合金激光多次冲击强化后组织和力学性能研究[J].红外与激光工程,2014(9):2889-2895.
[19] 朱颖;范博文;郭伟;康慧.激光冲击次数对TA15微观组织和硬度的影响[J].北京航空航天大学学报,2014(4):444-448.
[20] 石朝阳;刘赤荣;应才苏.激光冲击强化技术研究与应用现状[J].机械设计与制造,2010(4):61-63.
[21] 聂祥樊;何卫锋;李启鹏;楚峰.激光喷丸改善TC6钛合金组织和力学性能[J].强激光与粒子束,2013(5):1115-1119.
[22] 陆莹;赵吉宾;乔红超.TiAl合金激光冲击强化工艺探索及强化机制研究[J].中国激光,2014(10):119-124.
[23] 贾蔚菊;刘海涛;赵恒章;韩栋;乔博;洪权;郭萍.激光冲击强化近α钛合金的热稳定性[J].热加工工艺,2014(16):112-114,119.
[24] 何小东;史交齐;冯耀荣.BT20钛合金激光焊接残余应力场及热处理研究[J].热加工工艺,2005(5):45-47.
[25] 刘敏;陈士煊;康继东;陈勇.钛合金平板电子束焊接残余应力数值分析[J].航空动力学报,2001(1):63-66.
[26] 许海鹰;曹子文;邹世坤;车志刚.激光冲击处理对TC4氩弧焊焊缝力学性能的影响[J].稀有金属材料与工程,2012(4):672-676.
[27] 鲁金忠;张永康;孔德军;任旭东;葛涛;邹世坤.激光冲击强化对TC4电子束焊缝机械性能的影响[J].江苏大学学报(自然科学版),2006(3):207-210.
[28] 胡增荣;童国权;陈长军;郭华锋;周亮;徐家乐.激光纳米表面工程技术[J].激光技术,2014(6):764-770.
[29] 聂祥樊;何卫锋;臧顺来;王学德;李玉琴;柴艳.激光冲击对TC11钛合金组织和力学性能的影响[J].航空动力学报,2014(2):321-327.
[30] 张永康.激光冲击强化产业化关键问题及应用前景[J].激光与光电子学进展,2007(03):74-77.
[31] 乔红超;赵吉宾;郭庆耀.激光冲击强化激光器的研制[J].强激光与粒子束,2013(9):2179-2180.
[32] 李伟;李应红;何卫锋;李启鹏.激光冲击强化技术的发展和应用[J].激光与光电子学进展,2008(12):15-19.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%