基于分形理论建立了矿煤球团还原动力学新模型,通过钒钛磁铁精矿内配煤球团加热还原试验,探讨钒钛磁铁精矿内配煤球团分形还原机理.实验结果发现,钒钛磁铁精矿表面分维为2.2686;实验温度范围(960~1200℃)内,球团还原时间短于23 min时,其表观速率常数与温度之间关系为k1=624.843exp(-1.5324×104/T)min-1,活化能为127.40kj·mol-1;球团还原时间超过28 min后,其表观速率常数与温度之间关系为k2=0.035×exp(-0.5329×104/T) min-1,活化能为44.31kJ·mol-1.结果表明,球团还原初期主要受碳气化反应限制,后期主要受内扩散限制.
参考文献
[1] | 刘代俊.分形理论在化学工程中的应用[M].北京:化学工业出版社,2006 |
[2] | 辛厚文.分形介质反应动力学[M].上海:上海科技教育出版社,2000 |
[3] | 诸武扬.材料科学中的分形[M].北京:化学工业出版社,2004:140. |
[4] | Abraham M C;Ghosh A .Kinetics of reduction of iron oxide by carbon[J].Ironmaking and Steelmaking,1979(1):14. |
[5] | Nascimento R C;Mourao M B;Capocchi J D T .Kinetic and catastrophic swlling during reduction of iron ore in carbon bearing pellets[J].Ironmaking and Steelmaking,1999,26(3):182. |
[6] | Rao Y K .The kinetics of reduction of hematilte by carbon[J].Metallurgical Transactions,1971,2(5):1439. |
[7] | W-K. LU;D. Frank HUANG .The Evolution of Ironmaking Process Based on Coal-Containing Iron Ore Agglomerates[J].ISIJ International,2001(8):807-812. |
[8] | Wang Q;Yang Z;Tian J et al.Mechanisms of reduction in iron ore-coal composite pellet[J].Ironmaking and Steelmaking,1997,24(6):457. |
[9] | Huang B H;Lu W K .Kinetics and mechanisms of reactions in iron ore/coal composites[J].ISIJ International,1993,33(10):1055. |
[10] | Liu Guisu;Vladimir Strezov;John A Lucas et al.Thermal investigations of direct iron ore reduction with coal[J].Thermochimiea Acta,2004,410(1-2):133. |
[11] | 陶东平 .流固反应动力学的分形模型[D].昆明理工大学,2000. |
[12] | James P Hyslip;Luis E Vallejo .Fractal analysis of the roughness and size distribution of granular materials[J].Engineering Geology,1997,48(3-4):231. |
[13] | 郝向阳,盖国胜,张以河,杨玉芬,翟冠杰,南策文.粉体表面形貌研究[J].稀有金属材料与工程,2005(z1):215-218. |
[14] | 王国梁,周生路,赵其国.土壤颗粒的体积分形维数及其在土地利用中的应用[J].土壤学报,2005(04):545-550. |
[15] | Guswami C Manik .Interrelation between kinetics of reduction and volume change during the formation of directly reduced iron[J].Iron Steel Res,1997,68(12):547. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%