欢迎登录材料期刊网

材料期刊网

高级检索

针对矿物浮选过程中泡沫图像易受噪声影响,存在纹理细节模糊、灰度值对比度低等问题,提出一种浮选泡沫图像的非线性降噪方法。首先构造一种改进方向波变换,保证信号的平移不变性,同时采用提升算法减小其运算量。然后通过对分解系数建模,针对低频子带系数采用多尺度 Retinex 算法进行处理,以改善整体亮度均匀性,提高对比度;对各高通子带构建基于高斯混合尺度模型的分解系数邻域模型,并利用Bayes最小均方(BLS)估计进行局部去噪。最后利用所提出的方法对大量浮选泡沫图像进行去噪分析。结果表明:所提出的降噪方法能突出泡沫图像的纹理细节信息,提高泡沫图像的对比度,在信噪比和实时性上有明显提高,为后续泡沫图像的分割和工况识别奠定基础。

Considering the defects, such as easy sensitivity to noise and heavy texture, low contrast of gray value in the process of the floatation of foam image, a non-linear de-noising method was proposed. Lifting improved directionlet transform was firstly constructed, which not only ensured the shifting invariance but reduced its complexity. Multi-scale Retinex algorithm dealing with low-frequency subband coefficient was proposed for improving luminance uniformity and overall contrast. For high-pass subband, a model of decomposition coefficients neighbourhood based on Gaussian scale mixtures model was proposed for de-noising the image locally using Bayes least square (BLS). The analysis on the effect of de-noising was given to lots of real froth images. The results show that the proposed method is successful in maintaining edges and is superior in de-noising in term of PSNR and visual effect. It lays a foundation for foamy segmentation and analyzing grade from flotation froth image.

参考文献

[1] XU Can-hui;GUI Wei-hua;YANG Chun-hua .Flotation process fault detection using output PDF of bubble size distribution[J].Minerals Engineering,2012,26:5-12.
[2] C. Marais;C. Aldrich .Estimation of platinum flotation grades from froth image data[J].Minerals Engineering,2011(5):433-441.
[3] YANG Chun-hua,XU Can-hui,MU Xue-min,ZHOU Kai-jun.Bubble size estimation using interfacial morphological information for mineral flotation process monitoring[J].中国有色金属学报(英文版),2009(03):694-699.
[4] 刘金平,桂卫华,牟学民,唐朝晖,李建奇.基于Gabor小波的浮选泡沫图像纹理特征提取[J].仪器仪表学报,2010(08):1769-1775.
[5] CANDES E J .Ridgelets:Theory and applications[D].Stanford:Stanford University,1998.
[6] CANDES E J;DONOHO D L.Curvelets, multiresolution representation, and scaling laws[A].San Diego:SPIE,2000:1-12.
[7] Le Pennec E.;Mallat S. .Sparse geometric image representations with bandelets[J].IEEE Transactions on Image Processing,2005(4):423-438.
[8] Do M.N.;Vetterli M. .The contourlet transform: an efficient directional multiresolution image representation[J].IEEE Transactions on Image Processing,2005(12):2091-2106.
[9] LU Yi-xiang;GAO Qing-wei .Directionlet-based bayesian filter for SAR image despeckling[J].Procedia Engineering,2011,15:2788-2792.
[10] Velisavljevi V.;Beferull-Lozano B.;Vetterli M. .Space-Frequency Quantization for Image Compression With Directionlets[J].IEEE Transactions on Image Processing,2007(7):1761-1773.
[11] 白静,侯彪,王爽,焦李成.基于提升Directionlet域高斯混合尺度模型SAR图像噪声抑制[J].计算机学报,2008(07):1234-1241.
[12] NASON G P;SILVERMAN B W.The stationary wavelet transform and statistical applications[A].New York:Springer-Verlag,1995:281-299.
[13] Velisavljevic, V. .Low-Complexity Iris Coding and Recognition Based on Directionlets[J].IEEE transactions on information forensics and security,2009(3):410-417.
[14] Jobson D.J.;Rahman Z. .Properties and performance of a center/surround retinex[J].IEEE Transactions on Image Processing,1997(3):451-462.
[15] WANG Hao;HE Ming .Retinex-like method for image enhancement in poor visibility conditions[J].Procedia Engineering,2011,15:2798-2803.
[16] Donoho D.L. .De-noising by soft-thresholding[J].IEEE Transactions on Information Theory,1995(3):613-627.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%