欢迎登录材料期刊网

材料期刊网

高级检索

聚合物基体的变形局部化在复合材料破坏过程中起着重要作用。采用有限元分析方法, 借助用户材料子程序(UMAT), 描述了具有应变软化特点的高聚物弹塑性的本构关系, 研究了纤维/环氧树脂复合材料在拉伸破坏过程中基体局部变形的演化规律, 分析了基体的局部应变软化对纤维/环氧树脂复合材料应力的影响。结果表明: 纤维的应力分布及基体的塑性变形具有不均匀性; 基体局部变形降低了邻近断点的完好纤维的应力集中程度; 随着纤维间距的增加, 邻近断点的完好纤维的应力集中区域变宽, 而且应力集中程度降低。

The localized deformation of matrix plays an important role in determining the failure process of composites. In the current work, based on the finite element analysis, a proper elasto-plastic constitutive model considering the softening after yielding was introduced using the user-defined material mechanical behavior (UMAT) subroutine. Then the evolution of the localized deformation of matrix during the unidirectional tensile test of the fiber/epoxy composites was presented. The effect of the post-yield softening character of the polymer matrix on the loading transfer in the fiber/epoxy composites was studied. The results show that the stress distributions of fiber and the plastic deformation of matrix are nonuniform. The localized deformation of matrix reduces the degree of the stress concentration of the adjacent fiber. The range of the stress concentration in adjacent fiber becomes wider, while the stress concentration degree degrades, with the inter-fiber spacing increasing.

参考文献

[1] 杜善义.先进复合材料与航空航天[J].复合材料学报,2007,24(1):1-12.
[2] 陈祥宝,张宝艳,邢丽英.先进树脂基复合材料技术发展及应用现状[J].中国材料进展,2009,28(6):2-12.
[3] 益小苏,张明,安学锋,刘立朋.先进航空树脂基复合材料研究与应用进展[J].工程塑料应用,2009,37(10):72-76.
[4] 关志东,YangChihdar.复合材料管接头拉扭作用下胶层应力分析[J].复合材料学报,2004,21(3):96-101.
[5] LiHZ, JiaYX, Luan SF, Xiang Q, Han C C, Mamtimin G, Han Y C, An L J. Explanation for micromorpbologies around broken fibers Polymer Composites, in fiber- reinforced composites [J].2008, 29(6): 649-654.
[6] 王歆,贾玉玺,季忠,李红周.基于细观模型的纤维增强树脂基复合材料的裂纹与强度关系研究[J].玻璃钢/复合材料,2006(2):3-6.
[7] 李学梅,王继辉,高国强,冯武.单纤维复合材料断裂实验表征界面研究[J].武汉理工大学学报,2005,27(4):9-12.
[8] 王荣国,武卫莉,谷万里.复合材料概论[M].哈尔滨:哈尔滨工业大学出版社,2004:20-22.
[9] Heuvel P W J D, Peijs T, Young R J. Failure phenomena in two-dimensional multi-fiber micro-composites: 2. A Raman spectroscopic study of the influence of inter-fiber spacing on stress concentrations [ J ]. Composites Science and Technology, 1997, 57(8): 899-911.
[10] 王学滨,潘一山,盛谦,丁秀丽.岩体假三轴压缩及变形局部化剪切带数值模拟[J].岩土力学,2001,22(3):323-326.
[11] Ohno N, Okabe S, Okabe T. Stress concentrations near a fiber break in unidirectional composites with interfacial slip and matrix yielding [J]. International Journal of Solids and Structures: 2004, 41(16/17): 4263-4:177.
[12] Hedgepeth J M, Dyke Van P. Local stress concentration in imperfect filamentary composite materials [J ]. Journal of Composite Materials, 1967, 1(3): 294-309.
[13] Xia Z, Okabe T, Curtin W A. Shear lag versus finite element models for stress transfer in fiber-reinforced composites [J]. Composites Science and Technology, 2002, 62 : 1141-1149.
[14] Xia Z, Curtin W A, Okabe T. Green's function vs shear-lag models of damage and failure in fiber composites [J]. Composites Science and Technology, 2002, 62: 1279-1288.
[15] Sirivedin S, Fenner D N, Nath R B, Galiotis C. Effects of inter-fibre spacing and matrix cracks on stress amplification factors in carbon fibre/epoxy matrix composites, Part II: Hexagonal array of fibres [J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(11): 1936-1943.
[16] Heuvel P W J D, Goutianos S, Young R J, Peijs T. Failure phenomena in fibre reinforced composites. Part 6: A finite element study of stress concentrations in unidirectional carbon fibre-reinforced epoxy composites [J]. Composites Science and Technology, 2004, 64(5): 645-656.
[17] Wu P D, Giessen Van der E. Computational aspects of localized deformations in amorphous glassy polymer [J]. European Journal of Mechanics A/Solids, 1996, 15(5) : 799-823.
[18] Dreistadt C, Bonnet A S, Chevrier P, Lipinski P. Experimental study of the polycarbonate behaviour during complex loadings and comparison with the Boyce, Parks and Argon model predictions [J]. Materials and Design, 2009,30(8): 3126-3140.
[19] Wang M C, Guth E J. Statistical theory of networks of non- Gaussian flexible chains [J]. Journal of Chemical Physics, 1952, 20: 1144-1157.
[20] Arruda E M, Boyce M C. Effects of initial anisotropy on the finite strain deformation behavior of glassy polymers [J]. International Journal of Plasticity, 1993, 9: 783-811.
[21] Seelig Th. Computational modeling of deformation mechanisms and failure in thermoplastic multilayer composites [J]. Composites Science and Technology, 2008, 68(5) : 1198- 1208.
[22] Detwiler A T, Lesser A J. Aspects of network formation in glassy thermosets [J]. Journal of Applied Polymer Science, 2010, 117(2): 1021-1034.
[23] 沈观林,胡更开.复合材料力学[M].北京:清华大学出版社,2006:233-236.
[24] 金日光,华幼卿.高分子物理[M].北京:化学工业出版社,2006:220-230.
[25] Grubb D T, Li Z F, Phoenix S L. Measurement of stress concentration in a fiber adjacent to a fiber break in a model composite [J].Composites Science and Technology, 1995, 54(3) :237-249.
[26] 周国林,谭国焕,李启光,徐铖.剪切破坏模式下岩石的破坏准则[J].岩土力学与工程学报,200l,20(6):753-762.
[27] Zhou X F, Wagner H D. Stress concentrations caused by fiber failure in two-dimensional composites [J].Composited Science and Technology, 1999, 59(7): 1068-1071.
[28] Fiedler B, Klisch A, Schulte K. Stress concentrations in multiple fibre model composites[J].Composites Part A, 1998, 29A: 1013-1019.
[29] Sirivedin S, Fenner D N, Nath R B, Galiotis C. Effects of inter-fibre spacing and matrix cracks on stress amplification factors in carbon - fibre/epoxy matrix composites. Part I : Planar array of fibres [J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(12): 1227-1234.
[30] Landis C M, Mcmeeking R M. Stress concentrations in composites with interface sliding, matrix stiffness and uneven fiber spacing using shear lag theory [J]. International Journal of Solids and Structures, 1999, 86(28): 4333-4861.
[31] Li H Z, Jia Y X, Mamtimin G, Wang X, Jiang W, An L J. Numerical simulation of mesoscopie mechanical behaviors of gradual multi-fiber-reinforced polymer matrix composites [J].Macromolecular Materials and Engineering, 2006, 291(5): 510-516.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%