热电材料是一种集发电与制冷两种功能于一身的新型功能材料,已经成为21世纪新型功能材料研究领域的热点.概述了热电材料的发展历史,阐明了热电效应的理论基础,新型高效热电材料的发展现状及发展趋势,并对如何提高热电材料的优值系数及热电转化效率进行了分析.
参考文献
[1] | Gerald Mahan;Brian Sales;Jeff Sharp .THERMOELECTRIC MATERIALS: NEW APPROACHES TO AN OLD PROBLEM[J].Physics Today,1997(3):42-47. |
[2] | Zhang, Y.;Wang, H.;Kr?emer, S.;Shi, Y.;Zhang, F.;Snedaker, M.;Ding, K.;Moskovits, M.;Snyder, G.J.;Stucky, G.D. .Surfactant-free synthesis of Bi_2Te_3-Te micro-nano heterostructure with enhanced thermoelectric figure of merit[J].ACS nano,2011(4):3158-3165. |
[3] | Comparison of space- and ground-grown Bi_2Se_(0.21)Te_(2.79) thermoelectric crystals[J].Journal of Crystal Growth,2010(6):775. |
[4] | X. W. Wang;H. Lee;Y. C. Lan;G. H. Zhu;G. Joshi;D. Z. Wang;J. Yang;A. J. Muto;M. Y. Tang;J. Klatsky .Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy[J].Applied physics letters,2008(19):193121-1-193121-3-0. |
[5] | Joshi G;Lee H;Lan YC;Wang XW;Zhu GH;Wang DZ;Gould RW;Cuff DC;Tang MY;Dresselhaus MS .Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-type Silicon Germanium Bulk Alloys[J].Nano letters,2008(12):4670-4674. |
[6] | K. F. Cai;E. Muller;C. Drasar .Preparation and thermoelectric properties of Al-doped ZnO ceramics[J].Materials Science & Engineering, B. Solid-State Materials for Advanced Technology,2003(1/2):45-48. |
[7] | Terasaki I.;Uchinokura K.;Sasago Y. .LARGE THERMOELECTRIC POWER IN NACO2O4 SINGLE CRYSTALS[J].Physical Review.B.Condensed Matter,1997(20):12685-12687. |
[8] | Wang YY.;Rogado NS.;Cava RJ.;Ong NP. .Spin entropy as the likely source of enhanced thermopower in NaxCo2O4[J].Nature,2003(6938):425-428. |
[9] | Kouta Iwasaki;Hisanori Yamane;Shunichi Kubota .Power factors of Ca_3Co_2O_6 and Ca_3Co_2O_6-based solid solutions[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2003(1/2):210-215. |
[10] | He QY;Hao Q;Chen G;Poudel B;Wang XW;Wang DZ;Ren ZF .Thermoelectric property studies on bulk TiOx with x from 1 to 2[J].Applied physics letters,2007(5):52505-1-52505-3-0. |
[11] | P. Migiakis;J. Androulakis;J. Giapintzakis .Thermoelectric properties of LaNi_(1-x)Co_(x)O_(3) solid solution[J].Journal of Applied Physics,2003(12):7616-7620. |
[12] | Terasaki I.;Uchinokura K.;Sasago Y. .LARGE THERMOELECTRIC POWER IN NACO2O4 SINGLE CRYSTALS[J].Physical Review.B.Condensed Matter,1997(20):12685-12687. |
[13] | Kazeoka M.;Seo WS.;Koumoto K.;Hiramatsu H. .Improvement in thermoelectric properties of (ZnO)(5)In2O3 through partial substitution of yttrium for indium[J].Journal of Materials Research,1998(3):523-526. |
[14] | C.H. Lee;H. Kito;H. Ihara;K. Akita;N. Yanase;C. Sekine;I. Shirotani .Single crystal growth of skutterudite CoP_3 under high pressure[J].Journal of Crystal Growth,2004(1/4):358-362. |
[15] | Xun Shi;Shengqiang Bai;Lili Xi;Jiong Yang;Wenqing Zhang;Lidong Chen;Jihui Yang .Realization of high thermoelectric performance in n-type partially filled skutterudites[J].Journal of Materials Research,2011(15):1745-1754. |
[16] | G. S. Nolas;M. Kaeser;R. T. Littleton IV .High figure of merit in partially filled ytterbium skutterudite materials[J].Applied physics letters,2000(12):1855-1857. |
[17] | L. D. Chen;T. Kawahara;X. F. Tang;T. Goto;T. Hirai;J. S. Dyck;W. Chen;C. Uher .Anomalous barium filling fraction and n-type thermoelectric performance of Ba_(y)Co_(4)Sb_(12)[J].Journal of Applied Physics,2001(4):1864-1868. |
[18] | Tao He;Jiazhong Chen;H.David Rosenfeld;M.A.Subramanian .Thermoelectric Properties of Indium-Filled Skutterudites[J].Chemistry of Materials,2006(3):759-762. |
[19] | Zhao XY;Shi X;Chen LD;Zhang WQ;Zhang WB;Pei YZ .Synthesis and thermoelectric properties of Sr-filled skutterudite SryCo4Sb12[J].Journal of Applied Physics,2006(5):53711-1-53711-4-0. |
[20] | M. Puyet;B. Lenoir;A. Dauscher;M. Dehmas;C. Stiewe;E. Muller .High temperature transport properties of partially filled Ca_(x)Co_(4)Sb_(12) skutterudites[J].Journal of Applied Physics,2004(9):4852-4855. |
[21] | Y. Z. Pei;Jiong Yang;L. D. Chen;W. Zhang;J. R. Salvador;Jihui Yang .Improving thermoelectric performance of caged compounds through light-element filling[J].Applied physics letters,2009(4):042101-1-042101-3. |
[22] | Y.Z. Pei;S.Q. Bai;X.Y. Zhao .Thermoelectric properties of Eu_yCo_4Sb_(12) filled skutterudites[J].Solid state sciences,2008(10):1422-1428. |
[23] | Mohamed Hamid Elsheikh;Dhafer Abdulameer Shnawah;Mohd Faizul Mohd Sabri;Suhana Binti Mohd Said;Masjuki Haji Hassan;Mohamed Bashir Ali Bashir;Mahazani Mohamad .A review on thermoelectric renewable energy: Principle parameters that affect their performance[J].Renewable & sustainable energy reviews,2014(Feb.):337-355. |
[24] | Xun Shi;Shengqiang Bai;Lili Xi;Jiong Yang;Wenqing Zhang;Lidong Chen;Jihui Yang .Realization of high thermoelectric performance in n-type partially filled skutterudites[J].Journal of Materials Research,2011(15):1745-1754. |
[25] | Cui Yu;Tie-Jun Zhu;Rui-Zhi Shi .High-performance half-Heusler thermoelectric materials Hf_(1-x)Zr_xNiSn_(1-y)Sb_y prepared by levitation melting and spark plasma sintering[J].Acta materialia,2009(9):2757-2764. |
[26] | Saramat A;Svensson G;Palmqvist AEC;Stiewe C;Mueller E;Platzek D;Williams SGK;Rowe DM;Bryan JD;Stucky GD .Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba8Ga16Ge30[J].Journal of Applied Physics,2006(2):23708-1-23708-5-0. |
[27] | M. Hashimoto;O. Ohashi .Thermoelectric properties of Pb(1-x)Sn(x)Te FGM by liquid phase diffusion bonding[J].Materials Science Forum,1999(0):699-703. |
[28] | Shakouri A;Bowers JE .Heterostructure integrated thermionic coolers[J].Applied physics letters,1997(9):1234-1236. |
[29] | Marisol Martin-Gonzalez;O. Caballero-Calero;P. Diaz-Chao .Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field[J].Renewable & sustainable energy reviews,2013(Aug.):288-305. |
[30] | Liu, W.;Yan, X.;Chen, G.;Ren, Z. .Recent advances in thermoelectric nanocomposites (Review)[J].Nano Energy,2012(1):42-56. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%