材料研究学报,
2012, 26(1): 21-25.
不锈钢表面阴极微弧电沉积氧化铝膜层的性能
薛文斌金乾杜建成华铭吴晓玲
{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"The steel reinforced plastic pipe is a new kind of pressure pipe. It is made up with steel\nwires and plastic. Because reinforced skeleton of the steel wire increase the complexity\nof plastic flow during the extrusion phase, the traditional design criteria of extrusion\ndie is not suitable. The study on extrusion die of the kind of pipe is very important\nstep in produce development. Using finite element (FE) method in this paper, the\nflow rule of molten plastic inside the die has been predicted and a group of optimal\nstructural parameters was obtained. These results are helpful for reducing the design\ncycle and improve the quality of the final product.","authors":[{"authorName":"W.Q. Ma","id":"408541d3-9b89-4016-9341-4b803920058a","originalAuthorName":"W.Q. Ma"},{"authorName":"
H.Y. Sun","id":"a2f8ec1d-45ea-409b-8aa6-0f0c44562b90","originalAuthorName":" H.Y. Sun"},{"authorName":" D.C. Kang ","id":"1b330a61-b3fe-4739-ba8e-576db64345a1","originalAuthorName":" D.C. Kang "},{"authorName":" K.D. Zhao","id":"ee5a0cd9-3120-4e4f-a90f-6e9682a932ad","originalAuthorName":" K.D. Zhao"}],"categoryName":"|","doi":"","fpage":"303","id":"2a71898b-d980-43bb-94f6-1e1a07b60a12","issue":"3","journal":{"abbrevTitle":"JSXBYWB","coverImgSrc":"journal/img/cover/amse.jpg","id":"49","issnPpub":"1006-7191","publisherId":"JSXBYWB","title":"金属学报(英文版)"},"keywords":[{"id":"5ca0647b-e4df-41f3-83aa-d502fbd33fa0","keyword":"steel reinforced plastic pipe","originalKeyword":"steel reinforced plastic pipe"},{"id":"140f44b2-11ea-4f7f-8676-af45326712d3","keyword":"null","originalKeyword":"null"},{"id":"d5f608c6-d13d-48c0-bfe7-b204108c77c2","keyword":"null","originalKeyword":"null"}],"language":"en","publisherId":"1006-7191_2004_3_4","title":"Extrusion Die CAE of the Steel Reinforced Plastic Pipe","volume":"17","year":"2004"},{"abstractinfo":"The corrosion of an Fe-based alloy containing 15 wt pct
Y in
H2-H2S mixtures under 10-3 Pa S2 was studied at 600~800℃ in an attempt to find materials with improved sulphidation resistance with respect to pure Fe. The presence of
Y has been shown to be beneflcial, but not sufficient to the level expected. In fact, the alloy is able to form at all tested temperatures an external FeS layer, beneath which a zone containing a mixture of the two sulphides is also present. Thus,Fe can still diffuse through this region to form the outer FeS layer with non-negligible rate. The corrosion rate of Fe is considerably reduced by the
Y addition. but the alloy corrodes still much more rapidly than
Y. The sulphidation kinetics is generally rather irregular for both the pure metals, while the corrosion rate of the alloy decreases with time and tends to become parabolic after an initial period of 12~17
h. The sulphidation behaviour of the alloys is discussed by taking into account the presence of an intermetallic compound Fe17
Y2 and the limited solubility of
Y in Fe","authors":[{"authorName":"Yan NIU","id":"389caee7-2c11-486b-84f5-a9a5d6e8c562","originalAuthorName":"Yan NIU"},{"authorName":" Weitao WU and Chaoliu ZENG (State Key Lab. for Corrosion and Protection","id":"93eb10a8-36a6-40b4-b574-d9bb95b47c23","originalAuthorName":" Weitao WU and Chaoliu ZENG (State Key Lab. for Corrosion and Protection"},{"authorName":" Institute of Corrosion and Protection of Metals","id":"ba31ce1c-f424-4b12-98a5-5ed3ada5c19f","originalAuthorName":" Institute of Corrosion and Protection of Metals"},{"authorName":"Chinese Academy of Sciences","id":"208f4afe-b0bd-4e64-8ede-f0014ab20bf7","originalAuthorName":"Chinese Academy of Sciences"},{"authorName":" Shenyang 110015","id":"b7198b94-557a-4c33-88fc-71aff8a5bd63","originalAuthorName":" Shenyang 110015"},{"authorName":" China)F. Gesmundo and F. Viani (Instituto di Chimica","id":"a3a37a9b-efbd-4919-ad30-19f82c7d82b8","originalAuthorName":" China)F. Gesmundo and F. Viani (Instituto di Chimica"},{"authorName":" Facolta di Ingegneria","id":"742d023b-d29f-4052-9055-e7bc62a2d9b2","originalAuthorName":" Facolta di Ingegneria"},{"authorName":" Un","id":"d2f2ba15-6399-441a-87c5-65de4c9dee1b","originalAuthorName":" Un"}],"categoryName":"|","doi":"","fpage":"321","id":"79363b62-8f04-41c6-80cd-246ff1322527","issue":"5","journal":{"abbrevTitle":"CLKXJSY","coverImgSrc":"journal/img/cover/JMST.jpg","id":"11","issnPpub":"1005-0302 ","publisherId":"CLKXJSY","title":"材料科学技术(英文)"},"keywords":[],"language":"en","publisherId":"1005-0302_1996_5_13","title":"Corrosion of
Y, Fe and Fe-15
Y in
H_2-H_2S Mixture under 10~(-3) Pa S_2 at 600~800℃","volume":"12","year":"1996"},{"abstractinfo":"The corrosion properties of a Co-15wt%
Y alloy were studied in
H_2-H_2S mixtures under a sulfur pressure of 10-3 Pa at 600-800℃ and of 10-2 Pa at 800℃ to examine the effect of
Y on the resistance of pure cobalt to sulfur attack at high temperatures.The alloy is nearly single-phase.containing mostly the intermetallic compound Co17
Y2 plus a little amount of the solid solution of
Y in cobalt.At 600-700℃ and at 800℃ under 10-2 Pa of S2 the alloy forms multi-layered scales consisting of an outer region of pure cobalt sulfide,an intermediate region of a mixture of the sulfides of the two metals and finally an innermost layer of a mixture of yttrium sulfide with metal cobalt.At 800℃ under 10-3Pa of S2,below the dissociation pressure of cobalt sulfide, the alloy forms only a single layer composed of a mixture of metallic cobalt with yttrium sulfide.Pure
Y produces only the oxysulfide
Y2O2S, as a result of the good stability of this compound and of the presence of some impurities in the gas mixtures used The corrosion kinetics is generally rather complex and irregular except al 800℃under 10-3 Pa of S2.The addition of yttrium always reduces the sulfidation rate of cobalt, even though the formation of a continuous protective external layer of yttrium sulfide is never achieved.The internal sulfidation of
Y in Co-15%
Y is not associated with a depletion of
Y in the alloy.This kind of diffusionless internal attack is typical of alloys with a very small solubility of the most reactive component
Y in the base metal A.which restricts severely the
Y flux from the alloy towards the alloy-scale interface.","authors":[{"authorName":"NIU Yan","id":"9171371b-8c6f-401e-a2d5-ce0e022fdc1a","originalAuthorName":"NIU Yan"},{"authorName":"F.GESMUNDO","id":"85b1a55f-ae2d-42f8-a9c5-ea430ca88c92","originalAuthorName":"F.GESMUNDO"},{"authorName":"WU Weitao","id":"c936bf58-ebdd-44cc-846c-76c5575fc2c6","originalAuthorName":"WU Weitao"},{"authorName":"ZENG Chaoliu","id":"2e468676-a7e8-4e82-ab27-35c914b4cdea","originalAuthorName":"ZENG Chaoliu"},{"authorName":"F.VIANI","id":"6009b996-680e-4f42-8f3a-a49e6fcdf3cc","originalAuthorName":"F.VIANI"},{"authorName":"(State Key Laboratory for Corrosion and Protection","id":"2edb6148-a3c1-4dbb-b951-2c39fa344cb6","originalAuthorName":"(State Key Laboratory for Corrosion and Protection"},{"authorName":"Institute of Corrosion and Protection of Metals","id":"ba9beaaa-0ddc-4290-9a18-0a3bfa7a7d92","originalAuthorName":"Institute of Corrosion and Protection of Metals"},{"authorName":"Chinese Academy of Sciences","id":"76c23b32-530e-4a06-9760-f4d6256ea045","originalAuthorName":"Chinese Academy of Sciences"},{"authorName":"Shenyang.110015","id":"a31aed1f-33c9-48f2-8be0-4890dfbcb4fb","originalAuthorName":"Shenyang.110015"},{"authorName":"China)(Istituto di Chimica","id":"aec23e5b-f904-4ba0-a46f-fc59973c20f6","originalAuthorName":"China)(Istituto di Chimica"},{"authorName":"Facolta'di Ingegneria","id":"242145e7-7977-4865-8236-5bbaaad44017","originalAuthorName":"Facolta'di Ingegneria"},{"authorName":"Universita'di Genova","id":"7e7e9448-9477-4113-9dd2-da7cc8e65dd8","originalAuthorName":"Universita'di Genova"},{"authorName":"Fiera del Mare","id":"e28285ee-a243-4e5d-b87b-a2c6ed59b8b7","originalAuthorName":"Fiera del Mare"},{"authorName":"Pad.D","id":"77ab63a4-8201-4d32-896b-28a28de3c15b","originalAuthorName":"Pad.D"},{"authorName":"16129 Genova","id":"d0d6ed08-7472-487e-8464-d0b86ee8bd3f","originalAuthorName":"16129 Genova"},{"authorName":"Italy)Manuscript received 3 July 1995","id":"5decd5b9-d78c-461d-bad9-6c0664da5844","originalAuthorName":"Italy)Manuscript received 3 July 1995"}],"categoryName":"|","doi":"","fpage":"1","id":"17919e3f-d849-4d29-8e75-d26fd7052b7d","issue":"1","journal":{"abbrevTitle":"JSXBYWB","coverImgSrc":"journal/img/cover/amse.jpg","id":"49","issnPpub":"1006-7191","publisherId":"JSXBYWB","title":"金属学报(英文版)"},"keywords":[{"id":"fdbaae1b-cf02-4219-a53e-ce6a12ce35df","keyword":":cobalt-yttrium alloy","originalKeyword":":cobalt-yttrium alloy"},{"id":"120e92a5-664c-429c-bdce-d7830e824ae6","keyword":"null","originalKeyword":"null"},{"id":"ccfe9707-7fe0-466d-a4d0-df6e67927c06","keyword":"null","originalKeyword":"null"}],"language":"en","publisherId":"1006-7191_1996_1_7","title":"SULFIDATION OF Co-15wt%
Y ALLOY IN
H_2-H_2S MIXTURES AT 600-800℃","volume":"9","year":"1996"},{"abstractinfo":"The corrosion of an Fe-based alloy containing 15 wt pet
Y in
H-2-H2S mixtures under 10(-3) Pa S-2 was studied at 600 similar to 800 degrees C in an attempt to find materials with improved sulphidation resistance with respect to pure Fe. The presence of
Y has been shown to be beneficial, but not sufficient to the level expected. In fact, the alloy is able to form at all tested temperatures an external FeS layer, beneath which a zone containing a mixture of the two sulphides is also present. Thus, Fe can still diffuse through this region to form the outer FeS layer with non-negligible rate. The corrosion rate of Fe is considerably reduced by the
Y addition, but the alloy corrodes still much more rapidly than
Y. The sulphidation kinetics is generally rather irregular for both the pure metals, while the corrosion rate of the alloy decreases with time and tends to become parabolic after an initial period of 12 similar to 17
h. The sulphidation behaviour of the alloys is discussed by taking into account the presence of an intermetallic compound Fe17
Y2 and the limited solubility of
Y in Fe.","authors":[],"categoryName":"|","doi":"","fpage":"321","id":"65eff54b-8ad1-405f-9539-48a931902b6a","issue":"5","journal":{"abbrevTitle":"CLKXJSY","coverImgSrc":"journal/img/cover/JMST.jpg","id":"11","issnPpub":"1005-0302 ","publisherId":"CLKXJSY","title":"材料科学技术(英文)"},"keywords":[{"id":"67a758de-cdd0-4547-9393-4f218f66d259","keyword":"high-temperature sulfidation;most-reactive component;ni-nb alloys;
h2-h2s mixtures;behavior;600-degrees-c-800-degrees-c;oxidation","originalKeyword":"high-temperature sulfidation;most-reactive component;ni-nb alloys;h2-h2s mixtures;behavior;600-degrees-c-800-degrees-c;oxidation"}],"language":"en","publisherId":"1005-0302_1996_5_1","title":"Corrosion of
Y, Fe and Fe-15
Y in
H-2-H2S mixture under 10(-3) Pa S-2 at 600 similar to 800 degrees C","volume":"12","year":"1996"},{"abstractinfo":"分别利用真空等离子沉积和超音速火焰喷涂技术制备含有
Y和含
Y氧化物的NiCoCrAl涂层,用差热分析和光学及电子显微镜研究两种涂层在Ar-16.7%O2,Ar-3.3%
H2O和Ar-0.2%
H2-0.9%
H2O气氛中1100℃时的氧化动力学和断面微观结构,通过第一性原理计算对比在不同气氛中含
Y氧化物对涂层氧化的影响机理.结果表明:对于NiCoCrAl+
Y涂层,
Y倾向于向界面扩散并在界面富集导致Al2O3膜生成更多有利于内氧化的孔洞,水蒸气更会对内氧化产生促进作用.而对于NiCoCrAl+
Y(O)涂层,由于
Y在涂层制备过程中被氧钉扎,导致NiCoCrAl+
Y(O)涂层在上述气氛中生成了平直而均匀的Al2O3层,不同气氛对其氧化行为影响较小.上述研究进一步揭示NiCoCrAl涂层中活性元素
Y的存在状态和氧化气氛中的水蒸气对氧化铝组织结构和生长速率有重要影响.","authors":[{"authorName":"王逸群","id":"9b7df635-2891-4306-9306-cd77fc59f81f","originalAuthorName":"王逸群"},{"authorName":"宋鹏","id":"58d1bddf-678b-47cc-8316-15de26d36a2d","originalAuthorName":"宋鹏"},{"authorName":"季强","id":"6bda30fb-398c-4767-919a-4a4dd8ab5362","originalAuthorName":"季强"},{"authorName":"廖红星","id":"142a04d6-cec9-476c-9f43-c7fb17c6bb58","originalAuthorName":"廖红星"},{"authorName":"陆建生","id":"80cb31ef-d4f6-448f-8a35-aaa15957ab9a","originalAuthorName":"陆建生"}],"doi":"10.11868/j.issn.1001-4381.2015.000379","fpage":"65","id":"53984225-448a-426a-824b-b5410b2f3933","issue":"4","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"05204c63-d74b-44c2-aed7-742923da6c1e","keyword":"含钇氧化物","originalKeyword":"含钇氧化物"},{"id":"f04dee7b-b279-4624-9f31-7d6743a72543","keyword":"水蒸气","originalKeyword":"水蒸气"},{"id":"8f5d7a51-9d2a-4f78-bff4-7c9c23f663d6","keyword":"NiCoCrAl涂层","originalKeyword":"NiCoCrAl涂层"},{"id":"2d4b6fcd-5685-4e55-b2a0-a71d02a59c23","keyword":"热障涂层","originalKeyword":"热障涂层"},{"id":"119aca81-d426-4583-b14d-9b1776aa9ad9","keyword":"内氧化","originalKeyword":"内氧化"}],"language":"zh","publisherId":"clgc201704010","title":"
H2O和
Y(O)对NiCoCrAl热障涂层高温氧化的影响","volume":"45","year":"2017"},{"abstractinfo":"研究了纯Fe、纯
Y、Fe-15
Y和Fe-30
Y合金在600~800℃高硫压(10-3Pa)-低氧压(10-19Pa于600℃或10-15Pa于700℃和800℃)混合气中的腐蚀行为.
Y在600℃和700℃发生加速腐蚀,但在800℃形成的腐蚀膜有保护性.加入
Y能够降低合金的腐蚀速率,但在所有条件下,合金都形成FeS最外层膜、由两金属的化合物组成的中间层和由α-Fe和
Y的硫氧化物的细微混合物所组成内硫化-氧化区.Fe似以相当高的速率穿过中间层形成FeS外层.在合金/氧化膜界面内侧不产生
Y的贫化现象.从
Y在Fe","authors":[{"authorName":"牛焱","id":"91f6cb21-8d4b-4eed-ab04-00981c0994ec","originalAuthorName":"牛焱"},{"authorName":"晏人芸","id":"75305415-8a40-45ae-b6ae-c5981c91d8d8","originalAuthorName":"晏人芸"}],"categoryName":"|","doi":"","fpage":"3","id":"0c141ba9-228d-4076-b821-60f58f95d52e","issue":"3","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"108776a7-489d-47b3-9917-142055cbdee9","keyword":"Fe-
Y合金","originalKeyword":"Fe-Y合金"},{"id":"a0f76cf3-cf9b-40c7-804a-21b4413b1823","keyword":" yttrium","originalKeyword":" yttrium"},{"id":"970238a6-a25d-4349-bdcb-efa99d254c1a","keyword":" sulfidation","originalKeyword":" sulfidation"},{"id":"21936ddd-e751-410d-ad0b-81c5326cf5a9","keyword":" oxidation","originalKeyword":" oxidation"}],"language":"zh","publisherId":"1002-6495_1998_3_11","title":"Fe-
Y合金在600~800℃
H_2-CO_2-H_2S中的腐蚀","volume":"10","year":"1998"},{"abstractinfo":"报道了用反应溅射的方法在有强立方织构的NiW基带上连续制备
Y2O3隔离层的研究结果.用X射线θ~2θ扫描,ψ扫描对薄膜的取向和织构进行表征,用扫描电子显微镜(SEM)和原子力显微镜(AFM)对薄膜的表面形貌进行观察.论文主要研究了
H2O分压对
Y2O3隔离层外延生长以及表面形貌的影响,结果表明:
H2O分压过小,
Y2O3织构相对衬底有所弱化,薄膜表面不透明,原子覆盖不均匀,且不利于后续隔离层YSZ的生长.同时,临界
H2O分压与温度和总气压的关系也作了详细研究.","authors":[{"authorName":"张华","id":"4a8ce609-304f-4f21-b314-af9b1817bac9","originalAuthorName":"张华"},{"authorName":"金薇","id":"d452e0bc-588e-4062-b71a-2a18e795f20d","originalAuthorName":"金薇"},{"authorName":"刘慧舟","id":"be295389-16f8-49ab-912a-fd02cfea355a","originalAuthorName":"刘慧舟"},{"authorName":"杨坚","id":"3b86710f-45c1-4c00-8796-282d03419d49","originalAuthorName":"杨坚"}],"doi":"10.3969/j.issn.1000-3258.2008.04.009","fpage":"318","id":"c20f9896-759c-441a-ae81-3a122afad541","issue":"4","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"d043f558-6801-4529-8bbe-2bb7ed2db385","keyword":"反应溅射","originalKeyword":"反应溅射"},{"id":"0013ede9-2e43-4ab8-aae9-4a3b72eb14e0","keyword":"
Y2O3隔离层","originalKeyword":"Y2O3隔离层"},{"id":"d21c2caa-1dd1-43e5-b24f-3185e505be4b","keyword":"
H2O分压","originalKeyword":"H2O分压"},{"id":"f3fa2ff3-bd20-43f4-8c9c-01b271109dda","keyword":"表面形貌","originalKeyword":"表面形貌"}],"language":"zh","publisherId":"dwwlxb200804009","title":"反应气体
H2O对
Y2O3隔离层外延生长的影响","volume":"30","year":"2008"},{"abstractinfo":"由三元杂多化合物(NH4)13[
Y(SiMo11O39)2]·36
H2O与喹啉反应合成了电荷转移化合物(C9
H8N)10(NH4)3[
Y(SiMo11O39)2]*20
H2O.采用元素分析、X射线粉末衍射、红外光谱、固体漫反射电子光谱进行了表征.结果表明:喹啉通过N原子结合质子形成阳离子与稀土杂多阴离子成盐,固体化合物中阴离子和阳离子之间存在较强的相互作用;化合物在光激发下发生分子内电荷转移,导致有机C9
H8N+大阳离子的氧化和稀土杂多阴离子的还原,标题化合物颜色由黄转变为深蓝色.","authors":[{"authorName":"王世铭","id":"b6abf865-bf46-4d69-9ec5-cafd12fd1575","originalAuthorName":"王世铭"},{"authorName":"黄金凤","id":"23afe3a0-6d16-4e2a-9346-fcc3f744fdea","originalAuthorName":"黄金凤"},{"authorName":"林深","id":"206ed804-10b4-4849-9328-940cb9342046","originalAuthorName":"林深"},{"authorName":"郑瑛","id":"04fd9d0d-0657-49f8-aa06-ff999ceca511","originalAuthorName":"郑瑛"}],"doi":"10.3969/j.issn.1004-0277.2002.01.003","fpage":"11","id":"c568a9af-89f0-426f-b069-1e8cddc242f7","issue":"1","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"92e20512-1c2a-4bd1-8d0e-dbe66d73ac59","keyword":"电荷转移配合物","originalKeyword":"电荷转移配合物"},{"id":"4f4f901b-79fd-44a5-bf50-0e8d036907a6","keyword":"钇","originalKeyword":"钇"},{"id":"ee841ad3-a3de-4c07-84fa-5fd11387865f","keyword":"多金属氧酸盐","originalKeyword":"多金属氧酸盐"},{"id":"9f76bfe8-ad3b-4677-8669-418666d017e6","keyword":"合成","originalKeyword":"合成"},{"id":"05c4ce14-7fc7-4902-b67f-325c76024582","keyword":"表征","originalKeyword":"表征"}],"language":"zh","publisherId":"xitu200201003","title":"新型电荷转移配合物(C9
H8N)10(NH4)3[
Y(SiMo11O39)2]·20
H2O的合成与表征","volume":"23","year":"2002"},{"abstractinfo":"为了揭示14
H相的形成机理,制备并研究了18R LPSO单相Mg?
Y?Zn(简称S18)合金经773 K退火100
h的显微组织演变。结果表明:铸态S18合金主要由18R相组成(其体积分数高于93%),并含有少量的W相和α-Mg相。退火时,S18合金中的18R相保持稳定,未转变成14
H LPSO结构。然而,在α-Mg相内部形成了14
H层片相,其尺寸和体积分数随着退火时间的延长不断增大。TEM分析表明,14
H相在α-Mg内基面堆垛层错区域独立形核。14
H层片的增厚生长是界面控制过程,与基面台阶的形成密切联系。而14
H层片的伸长生长属于扩散控制,与溶质元素的扩散有关。该18R单相合金中14
H相的形成机理可通过反应式α-Mg'→α-Mg +14
H表示。","authors":[{"authorName":"刘欢","id":"cc1505a9-43de-4f39-a5a3-0727444bfc50","originalAuthorName":"刘欢"},{"authorName":"严凯","id":"f99f62a5-2e74-41d5-b420-fc436d0e5ad2","originalAuthorName":"严凯"},{"authorName":"晏井利","id":"fd79b54a-38c9-48a6-acdb-de6b67b57c97","originalAuthorName":"晏井利"},{"authorName":"薛烽","id":"4367ebe3-393b-4135-8dd9-48d97e4bca48","originalAuthorName":"薛烽"},{"authorName":"孙甲鹏","id":"0ebbce9a-b974-4c3c-9c03-c9ef2ee186bf","originalAuthorName":"孙甲鹏"},{"authorName":"江静华","id":"c7b0166e-0ae1-4732-9e52-b4b3c2f6b842","originalAuthorName":"江静华"},{"authorName":"马爱斌","id":"fe7e4d39-6d08-4f68-8540-b42371191e93","originalAuthorName":"马爱斌"}],"doi":"10.1016/S1003-6326(17)60007-4","fpage":"63","id":"ada80e52-d938-45d7-ba2c-7f60c8399822","issue":"1","journal":{"abbrevTitle":"ZGYSJSXBEN","coverImgSrc":"journal/img/cover/ZGYSJSXBEN.jpg","id":"757390d2-7d95-4517-96f1-e467ce1bff63","issnPpub":"1003-6326","publisherId":"ZGYSJSXBEN","title":"中国有色金属学报(英文版)"},"keywords":[{"id":"fb703fba-f24f-4a48-93b4-c9fe0ce0acd0","keyword":"Mg-
Y-Zn合金","originalKeyword":"Mg-Y-Zn合金"},{"id":"c84480e8-cb53-47b5-91b4-af166ab2a275","keyword":"18R LPSO相","originalKeyword":"18R LPSO相"},{"id":"9977f2da-ed3a-454c-b7a5-55146ef99a37","keyword":"14
H LPSO相","originalKeyword":"14H LPSO相"},{"id":"6e0d6ae6-fe26-46bf-ab26-b030988e35f8","keyword":"高温退火","originalKeyword":"高温退火"},{"id":"03ec32ce-cc2b-4872-bc00-6d145929c8c7","keyword":"显微组织演变","originalKeyword":"显微组织演变"}],"language":"zh","publisherId":"zgysjsxb-e201701007","title":"18R单相Mg-
Y-Zn合金经773 K退火过程中14
H LPSO相的析出行为","volume":"27","year":"2017"},{"abstractinfo":"无水YCl3与1-环戊烷基茚基锂以1/2的摩尔比在THF中反应合成了二(1-环戊烷基茚基)氯化钇(C5
H9C9H6)2
Y(μ-Cl)2Li(THF)2,产物用元素分析、红外光谱及XRD进行表征. 结果表明,其晶体属于正交晶系,Pna2(1)空间群,a =1.648 2(7) nm,b =1.877 2(8) nm,c =1.131 7(5) nm,V =3.501(3) nm3,Z=4,Dc=1.285 Mg/m3,最终的偏离因子R=0.068 3,Rw=0.114 3.","authors":[{"authorName":"齐民华","id":"f1c02a3c-c9ee-4142-ae6e-51cf31de52a1","originalAuthorName":"齐民华"},{"authorName":"沈琪","id":"4b09b35f-6e17-4762-bb25-5de842a3373a","originalAuthorName":"沈琪"},{"authorName":"陈小平","id":"42377aa3-90f3-4f6b-a7e8-dcd36cf8e205","originalAuthorName":"陈小平"},{"authorName":"翁林红","id":"123a131e-32cb-42ff-84ff-8fdf021f4b80","originalAuthorName":"翁林红"}],"doi":"10.3969/j.issn.1000-0518.2003.07.004","fpage":"629","id":"0f162c0a-8c31-4c5f-a193-74672a1ef63a","issue":"7","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"758a2f61-fa55-4fb4-baa3-713c468be834","keyword":"环戊烷基茚基","originalKeyword":"环戊烷基茚基"},{"id":"55bc6a41-005c-47bf-b29f-8275d301c78a","keyword":"稀土配合物","originalKeyword":"稀土配合物"},{"id":"bfaaaa8e-2bbc-46da-9de6-50abe433483b","keyword":"合成","originalKeyword":"合成"},{"id":"dcf440d3-6f29-47c7-80cc-d1a8b57230e4","keyword":"晶体结构","originalKeyword":"晶体结构"}],"language":"zh","publisherId":"yyhx200307004","title":"环戊烷基茚基氯化钇(1-C5
H9C9H6)2-
Y(μ-Cl)2Li(THF)2的合成及其晶体结构","volume":"20","year":"2003"}],"totalpage":3259,"totalrecord":32582}