欢迎登录材料期刊网

材料期刊网

高级检索

采用电场激活压力辅助合成技术(FAPAS)并结合原位反应的方法制备TiB2-TiC-Ni/TiAl/Ti功能梯度材料,研究了TiB2-TiC-Ni/TiAl/Ti功能梯度材料的界面微结构特征及其结合强度,分析了梯度材料界面的微观组织和元素分布,并分析了试样的抗剪切强度和显微硬度。研究表明:制备的TiB2-TiC-Ni/TiAl/Ti功能梯度材料组织致密,TiB2-TiC复合陶瓷晶粒细小且均匀分布;各层界面区形成了良好的扩散冶金结合,连接区剪切强度达85.878 MPa。显微硬度由钛板到陶瓷层呈梯度变化,表层最大显微硬度达HV2760。

Field-activated pressure-assisted synthesis(FAPAS) combining in-situ synthesis method was used to prepare TiB2-TiC-Ni/TiAl/Ti functionally graded materials.Interfacial microstructure and bonding strength of materials have been mainly investigated.The microstructure and distribution of element of interface was analyzed.The shear strength and micro-hardness were also tested.The results show that the grains of TiB2-TiC composite ceramics prepared by FAPAS are fine and homogeneous distribution.The interface forms closely combination and the elements appear mutual diffusion,which forms good metallurgical bonding and the maximum shear strength of joint reaches 85.878 MPa.The micro-hardness of the sample changes gradually from titanium substrate to the cermet,and the maximum hardness of the surface up to HV2760.

参考文献

[1] Vallauri D, Atias Adrian I C, Chrysanthou A. TiC-TiB2 composites: A review of phase relationships, processing and properties [J]. Journal of the European Ceramic Society, 2008, 28(8): 1697-1713.
[2] Zhang X H, Zhu C C, Qu W, He X D, Kvanin V L. Self-propagating high temperature combustion synthesis of TiC/TiB2 ceramic-matrix composites [J]. Composites Science and Technology, 2002, 62(15): 2037-2041.
[3] Matsushita J, Suzuki T, Sano A. Wire electrical discharge machining of TiB2 composite [J]. Journal of the Ceramic Society of Japan, 1992, 100(2): 219-222.
[4] Andreev Y, Levashov E A, Sheveiko A. Electrochemical corrosion behavior of SHS-synthesized magnetron composite TiC-based targets and sputtered thin films [J]. Surface & Coatings Technology, 1997, 90(1): 42-52.
[5] Kecskes L J, Kottke T, Niiler A. Microstructural properties of combustion-synthesized and dynamically consolidated titanium diboride and titanium carbide [J]. Journal of the American Ceramic Society, 1990, 73(5): 1274-1282.
[6] Locci A M, Orru R, Cao G, Munir Z A. Effect of ball milling on simultaneous spark plasma synthesis and densification of TiC-TiB2 composites [J]. Materials Science and Engineering A, 2006, 434(1/2): 23-29.
[7] Yeh C L, Chen Y L. Combustion synthesis of TiC-TiB2 composites [J]. Journal of Alloys and Compounds, 2008, 463(1/2): 373-377.
[8] Lee J W, Munir Z A, Ohyanagi M. Dense nanocrystalline TiB2-TiC composites formed by field activation from high-energy ball milled reactants [J]. Materials Science and Engineering A, 2002, 325(1/2): 221-227.
[9] Locci A M, Licheri R, Orru R, et al, Mechanical and electric current activation of solid-solid reactions for the synthesis of fully dense advanced materials [J]. Chemical Engineering Science, 2007, 62(18/20): 4885-4890.
[10] 朱春城, 张幸红, 徐强, 赫晓东. 自蔓延高温合成法制备TiB2-TiC复合陶瓷[J]. 材料工程, 2002(2): 13-15.
[11] Munir Z A, Anselmi-Tamburini U. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method [J]. Journal of Materials Science, 2006, 41(3): 763-777.
[12] Ji G, Goran D, Bernard F, et al. Structure and composition heterogeneity of a FeAl alloy prepared by one-step synthesis and consolidation processing and their infiuence on grain size characterization [J]. Journal of Alloys and Compounds, 2006, 420(1/2): 158-164.
[13] Gauthier V, Bernard F, Gaffet E, et al. Synthesis of nanocrystalline NbAl3 by mechanical and field activation [J]. Intermetallics, 2001, 9(7): 571-580.
[14] Chen S P, Meng Q S, Liu W, Munir Z A. Titanium diboride-nickel graded materials prepared by field-activated, pressure-assisted synthesis process [J]. Journal of Materials Science, 2009, 44(4): 1121-1126.
[15] 叶波, 李庆余, 赵恒勤. 梯度功能材料制备方法研究现状与展望[J]. 矿产保护与利用, 2004, 4: 47-51.
[16] 王朋波, 杨冠军, 毛小南. 放电等离子原位烧结制备TiC+TiB/Ti复合材料[J]. 稀有金属材料与工程, 2007, 36 (3): 484-488.
[17] 朱德贵, 尹显东, 肖传春. 原位合成TiB2-TiC-SiC陶瓷复合材料[J].西南交通大学学报, 1999, 34(1): 71-75.
[18] Meng Q S, Chen S P, Shen Y L, et al. Microstructure and mechanical properties of graded materials prepared by field-activated and pressure-assisted combustion synthesis [J]. Key Engineering Materials, 2008, 368/372: 1876-1878.
[19] 方洪渊, 冯吉才. 材料连接过程中的界面行为 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2005: 193-196.
[20] 刘咏, 黄伯云, 贺跃辉, 杨兵. 元素粉末冶金方法制备TiAl基合金[J]. 粉末冶金材料科学与工程, 1999, 4(3): 189-194.
[21] 乔亚霞. 电场加压辅助燃烧合成技术及电场的作用研究[J]. 江苏陶瓷, 2002, 35(2): 8-11.
[22] 孟庆森, 辛立军, 陈少平, Munir Z A. 电场激活燃烧合成(TiB2)PNi/Ni3Al/Ni功能梯度材料[J]. 复合材料学报, 2009, 26(1): 80-85.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%