采用拉伸与疲劳试验、扫描电子显微分析与透射电子显微分析,研究不同热机械处理条件下2E12铝合金的拉伸力学性能、疲劳性能以及显微组织结构.结果表明:采用本热机械处理可以使2E12合金同时获得高强度与高塑性,在屈服强度达到453.1 MPa、抗拉强度高达546.9 MPa的同时,伸长率仍然保持在16.5%.当应力比R=0.1,加载频率f=10 Hz,应力强度因子△K=10 MPa·m-1/2时,热机械处理样品裂纹扩展速率约为6.74×10-5mm/cycle,优于T3状态下的8.35×10-5 mm/cycle.显微组织观测结果表明:采取本新型热机械处理后,合金中位错密度较高且相互缠结,形成胞状组织.新型热机械处理大幅改善合金综合性能的机制是高密度位错胞状组织、溶质原子团簇及空位复合体、GPB区等复合组织结构的协同作用.
参考文献
[1] | T. Warner .Recently-Developed Aluminum Solutions for Aerospace Applications[J].Materials Science Forum,2006(Pt.2):1271-1278. |
[2] | SRIVATSAN T S;KOLAR D;MAGUUSCN P .The cyclic fatigue and final fracture behavior of aluminum alloy 2E12[J].Materials and Design,2002,23:129-139. |
[3] | Manabu Nakai;Takehiko Eto .New aspects of development of high strength aluminum alloys for aerospace applications[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2000(1/2):62-68. |
[4] | Y.J. Huang;Z.G. Chen;Z.Q. Zheng .A conventional thermo-mechanical process of Al-Cu-Mg alloy for increasing ductility while maintaining high strength[J].Scripta materialia,2011(5):382-385. |
[5] | 黄裕金,陈志国,周娴,杨文玲.铝合金热机械处理的研究发展[J].材料导报,2010(01):93-98. |
[6] | Jianhua Wang;Danqing Yi;Xuping Su .Influence of deformation ageing treatment on microstructure and properties of aluminum alloy 2618[J].Materials Characterization,2008(7):965-968. |
[7] | SINGH S;GOEL D B .Influence of thermomechanical aging on tensile properties of 2014 aluminum alloy[J].Journal of Materials Science,1990,25:3894-3900. |
[8] | L.S. Toth;M. Arzaghi;J.J. Fundenberger .Severe plastic deformation of metals by high-pressure tube twisting[J].Scripta materialia,2009(3):175-177. |
[9] | Liu, MP;Roven, HJ;Murashkin, M;Valiev, RZ .Structural characterization by high-resolution electron microscopy of an Al-Mg alloy processed by high-pressure torsion[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2009(1/2):122-125. |
[10] | Vidal, V;Zhang, ZR;Verlinden, B .Precipitation hardening and grain refinement in an Al-4.2wt%Mg-1.2wt%Cu processed by ECAP[J].Journal of Materials Science,2008(23/24):7418-7425. |
[11] | Prados, E;Sordi, V;Ferrante, M .Tensile behaviour of an Al-4 wt.%Cu alloy deformed by equal-channel angular pressing[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2009(1/2):68-70. |
[12] | Y. J. Kwon;I. Shigematsu;N. Saito .Mechanical properties of fine-grained aluminum alloy produced by friction stir process[J].Scripta materialia,2003(8):785-789. |
[13] | SRIVATSAN T S;KOLAR D;MAGNUSEN P .The cyclic fatigue and final fracture behavior of aluminum alloy 2E12[J].Materials and Design,2002,23(02):129-139. |
[14] | 杨胜,易丹青,杨守杰,钟利.腐蚀环境下2E12航空铝合金疲劳裂纹扩展行为研究[J].材料工程,2007(12):26-29,34. |
[15] | 刘岗,郑子樵,杨守杰,戴圣龙,李世晨.2E12铝合金的疲劳性能与裂纹扩展行为[J].机械工程材料,2007(11):65-68,72. |
[16] | 刘立名,段梦兰,柳春图,赵慧娟.对裂纹扩展规律Paris公式物理本质的探讨[J].力学学报,2003(02):171-175. |
[17] | ZHAO Tian-wen;ZHANG Ji-xi;JIANG Yan-yao .A study of fatigue crack growth of 7075-T651 aluminum alloy[J].International Journal of Fatigue,2008,30:11691180. |
[18] | 杨海生,常新龙.LD10铝合金疲劳裂纹扩展速率的研究[J].理化检验-物理分册,2005(07):333-335. |
[19] | RINGER S P;HONO K;SAKURAI T;POLMEAR I J .Cluster hardening in Al-Cu-Mg alloys[J].Scripta Materialia,1997,36:517-521. |
[20] | RINGER S P;SAKURAI T;POLMEAR I J .Origins of hardening in Al-Cu-Mg-(Ag) alloys[J].ACTA MATERIALIA,1997,45:3731-3744. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%