材料热处理学报, 2012, 33(1): 136-140.
回火马氏体钢中氢的扩散行为及其氢脆敏感性
武光宗 1, , 王毛球 2, , 王春芳 {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用内氧化法在铜镁合金表面制备了MgO/Cu复合材料内氧化层,研究了内氧化时间对内氧化层厚度、硬度、导电率的影响以及内氧化层的组织,并分析了铜镁合金的内氧化热力学.结果表明:随着内氧化时间延长,内氧化层的厚度和导电率均逐渐增加,硬度则先升后降;当内氧化时间为10 h时,内氧化层的性能最佳,导电率为75.9 %IACS,硬度为123.3 HV;铜镁合金经内氧化后,固溶在铜基体内的镁以MgO的形式析出形成内氧化层,MgO颗粒弥散分布是内氧化层综合性能大幅提高的根本原因;铜镁合金内氧化热力学的临界氧分压,介于10-31419/T+5.66和10-17 611/T+ 12.91之间.","authors":[{"authorName":"王庆福","id":"138baefa-891b-464b-8fe1-f98f4fd6c0ee","originalAuthorName":"王庆福"},{"authorName":"张彦敏","id":"3085e134-c6aa-48ab-ae3e-57aee742f3df","originalAuthorName":"张彦敏"},{"authorName":"国秀花","id":"da5f8ec5-43ba-43bd-9998-1a2970491073","originalAuthorName":"国秀花"},{"authorName":"宋克兴","id":"d88b66b1-3c24-4cc9-8ae4-e865edf992e0","originalAuthorName":"宋克兴"}],"doi":"","fpage":"58","id":"b0e55c0f-14e8-492e-acbf-0d53f3690cbe","issue":"1","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"dc4042ba-ef18-43e5-b6ae-38b157f80970","keyword":"MgO/Cu复合材料","originalKeyword":"MgO/Cu复合材料"},{"id":"edc40201-c8c2-47ee-895a-9a19d8d8fbb1","keyword":"内氧化法","originalKeyword":"内氧化法"},{"id":"aa6eb92f-5517-4685-9986-2456299605df","keyword":"导电率","originalKeyword":"导电率"},{"id":"2ada3a6d-0e48-4424-a242-f27f54dd3e0e","keyword":"硬度","originalKeyword":"硬度"}],"language":"zh","publisherId":"jxgccl201501013","title":"在铜镁合金表面制备MgO/Cu复合材料内氧化层的组织和性能","volume":"39","year":"2015"},{"abstractinfo":"本文对比分析了传统法和微波辅助法合成的Mg( OH)2对所制备的纳米MgO晶粒尺寸和表面形貌的影响,以及纳米MgO不同制备方法对MgO/LDPE纳米复合材料空间电荷、体积电阻率及直流击穿场强的影响.结果表明,传统法制备的纳米MgO晶粒尺寸为22.74 nm,微波辅助法制备的纳米MgO的晶粒尺寸为12.76 nm, MgO质量分数为2%时有效降低了复合材料内部空间电荷的积聚,对复合材料的体积电阻和击穿场强均有提高.","authors":[{"authorName":"张文龙","id":"8f0be1b1-449a-4ac0-962c-50a7d3c1e5b5","originalAuthorName":"张文龙"},{"authorName":"仲利东","id":"35673535-6e4d-4b76-abe3-2d0a9e756344","originalAuthorName":"仲利东"},{"authorName":"吴月","id":"a148184c-2a1b-4e50-9310-d0a8ca4912c3","originalAuthorName":"吴月"},{"authorName":"杨佳明","id":"49b22b7c-9364-4f8b-a2a5-94e03c006e81","originalAuthorName":"杨佳明"},{"authorName":"赵洪","id":"0d913486-b1ff-46ed-93a7-42d279534d18","originalAuthorName":"赵洪"},{"authorName":"白永平","id":"2206d9a1-37b1-48c6-9536-2aaa9acef16e","originalAuthorName":"白永平"}],"doi":"","fpage":"113","id":"26b6c717-7d85-4a4a-93b5-0afe7fc6530b","issue":"6","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"1fcd95bb-065f-4b9e-a124-8f75252098e9","keyword":"纳米MgO","originalKeyword":"纳米MgO"},{"id":"f227af5c-9962-4fb3-badc-9183bc1dd253","keyword":"微波辅助法","originalKeyword":"微波辅助法"},{"id":"003c4940-6561-4cbb-881d-6b61b2f974c7","keyword":"制备工艺","originalKeyword":"制备工艺"},{"id":"643b1dcc-f1c6-4e0d-8970-79ebc1ff76d9","keyword":"纳米复合材料","originalKeyword":"纳米复合材料"},{"id":"0e572064-082e-46cc-bb31-6bb09109836a","keyword":"介电性能","originalKeyword":"介电性能"}],"language":"zh","publisherId":"clkxygy201406020","title":"纳米MgO制备方法对MgO/LDPE纳米复合材料介电性能的影响","volume":"","year":"2014"},{"abstractinfo":"通过熔融共混法制备了纳米MgO/高密度聚乙烯(nano-MgO/HDPE)复合材料,并对该复合材料的力学性能进行了测试,用SEM对nano-MgO在nano-MgO/HDPE复合材料中的分散情况进行了观测,通过紫外可见光谱研究了复合材料的紫外屏蔽性能,通过TG研究了复合材料的热稳定性,通过DSC研究了复合材料的结晶性能.结果表明:虽然nano-MgO的引入使HDPE的热分解温度有所降低,但nano-MgO的引入提高了HDPE的冲击强度、弯曲强度及紫外屏蔽性能.当nano-MgO含量为2wt%时,nano-MgO/HDPE复合材料的冲击强度比纯HDPE高14%.当nano-MgO含量为4wt%时,nano-MgO/HDPE复合材料的弯曲强度比纯HDPE高18%.nano-MgO在nano-MgO/HDPE复合材料中的分散均匀,且nano-MgO的引入可以促进HDPE的结晶.","authors":[{"authorName":"杨晓明","id":"2333dded-eaf6-4a4d-aecc-99a55ce55162","originalAuthorName":"杨晓明"},{"authorName":"王铎","id":"1646f52f-4827-44a5-ad61-2f9cad08008e","originalAuthorName":"王铎"},{"authorName":"田耘","id":"1109ab54-1433-431a-907e-a551a66ebff1","originalAuthorName":"田耘"}],"doi":"10.13801/j.cnki.fhclxb.20150528.002","fpage":"234","id":"43522ead-3aeb-4095-8c3d-b5f1751c821d","issue":"2","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"b4145bf5-1476-46b7-a067-e2ae20303f48","keyword":"高密度聚乙烯","originalKeyword":"高密度聚乙烯"},{"id":"9c131556-96fa-4bd5-84de-5bdf14b4e45e","keyword":"nano-MgO","originalKeyword":"nano-MgO"},{"id":"6783b696-5024-440e-b829-1090e005a597","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"43a65535-8ca6-4362-abde-13e057257c50","keyword":"紫外屏蔽","originalKeyword":"紫外屏蔽"},{"id":"be86b282-6f61-46ae-9f5f-ed456ffe862d","keyword":"结晶性能","originalKeyword":"结晶性能"}],"language":"zh","publisherId":"fhclxb201602002","title":"纳米MgO/高密度聚乙烯复合材料的性能","volume":"33","year":"2016"},{"abstractinfo":"对MgO-SiC-C复合材料的力学性能和抗热震性能的研究结果表明:SiC含量增加,材料的强度和抗热震性能提高。升温过程中结合剂结构的变化对MgO-SiC-C复合材料强度变化起重要作用。","authors":[{"authorName":"李君","id":"193fe38e-734f-4759-a1df-baf2032df6bc","originalAuthorName":"李君"},{"authorName":"王俭","id":"b9c4daa1-8aac-4073-a3b8-d677ea659edd","originalAuthorName":"王俭"},{"authorName":"钟香崇","id":"eb0dbb56-2067-4e7d-827a-5a55769a9ec2","originalAuthorName":"钟香崇"}],"doi":"10.3969/j.issn.1001-1935.2000.02.007","fpage":"86","id":"3ebc2464-4a99-441d-990b-e6d4e08c2a62","issue":"2","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"f89fa196-c29a-44f1-a8e7-e8922fa11122","keyword":"MgO-SiC-C复合材料","originalKeyword":"MgO-SiC-C复合材料"},{"id":"c6fe5362-53e5-4230-816d-82ff654b662b","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"78330b25-08de-4b6d-8a66-837dba7787de","keyword":"抗热震性能","originalKeyword":"抗热震性能"}],"language":"zh","publisherId":"nhcl200002007","title":"MgO-SiC-C复合材料力学性能和抗热震性能研究","volume":"34","year":"2000"},{"abstractinfo":"采用磁控溅射技术制备了SiC/Cu复合材料和SiC、Cu膜.用SEM和XRD对材料的微观结构进行观察和分析,压痕测试和拉伸实验结果表明:SiC/Cu复合材料的层状结构清晰,其韧性和拉伸强度相对于SiC材料有很大提高,但显微硬度有所降低.断口分析表明:裂纹偏转、金属塑性变形、宏观桥联等是其拉伸强度提高的主要原因.","authors":[{"authorName":"邵传兵","id":"b6dc59db-0f92-4282-a6ef-ba5e1044f117","originalAuthorName":"邵传兵"},{"authorName":"苑永涛","id":"4ef4a737-6e70-4337-8dad-6d7d966e16bf","originalAuthorName":"苑永涛"},{"authorName":"方敬忠","id":"ea9a3360-bac5-4515-b38e-1a26ddfdd6e5","originalAuthorName":"方敬忠"}],"doi":"10.3969/j.issn.1007-2330.2011.04.019","fpage":"77","id":"b90a533f-e995-4a22-9407-dee2c217a610","issue":"4","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"2d606d6a-fbda-4558-b430-245fa1a69b2a","keyword":"SiC/Cu","originalKeyword":"SiC/Cu"},{"id":"2340dbdc-f868-408a-bd94-ce7af2968b21","keyword":"磁控溅射","originalKeyword":"磁控溅射"},{"id":"5a096a42-e837-4d40-8dc0-259de4851606","keyword":"硬度","originalKeyword":"硬度"},{"id":"9e028652-5ff3-4f21-a246-99ce65ad8441","keyword":"拉伸强度","originalKeyword":"拉伸强度"}],"language":"zh","publisherId":"yhclgy201104019","title":"SiC/Cu复合材料的性能","volume":"41","year":"2011"},{"abstractinfo":"采用双螺杆挤出工艺制备了氮化铝(AlN)/ZnO@MgO核壳结构的复合粉体/超支化尼龙(HPA)/尼龙66(PA66)复合材料.对所制备的复合材料,采用拉伸、冲击、弯曲、导热系数测量、扫描电镜等测试方法研究了PSA纤维对复合材料的力学性能、导热性能、结构与微观形貌等的影响.结果表明,AlN/ZnO@MgO粉体填料的添加可以提升复合材料的力学性能以及介电常数.适量的AlN/ZnO@MgO可以较好地分散在PA66基体中,与PA66基体的界面结合较好,同时存在物理与化学结合.","authors":[{"authorName":"刘红梅","id":"4b44ac9e-b937-469a-9bf8-6d5487150e5b","originalAuthorName":"刘红梅"},{"authorName":"刘林","id":"96fd63ed-1765-47cd-93ac-ac86e7afe8ac","originalAuthorName":"刘林"},{"authorName":"陈旭东","id":"b78c4803-7a65-4ae0-a2e2-ec2251da0aae","originalAuthorName":"陈旭东"}],"doi":"","fpage":"28","id":"1021a461-8fa7-4dbe-961a-5e2b01d85c97","issue":"5","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"d004ac54-6a0e-4676-9675-4513e9c27e37","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"2ce60f71-8ae6-4524-b374-d73f5a9823e5","keyword":"导热塑料","originalKeyword":"导热塑料"},{"id":"bd28e710-7324-4a8c-8124-2d5b172f59c9","keyword":"界面结合","originalKeyword":"界面结合"}],"language":"zh","publisherId":"hccllhyyy201605006","title":"AlN/ZnO@MgO/HPA/PA66复合材料的性能研究","volume":"45","year":"2016"},{"abstractinfo":"利用对苯二甲酸二甲酯(DMT)、顺丁烯二酸酐(MA)和1,2-丙二醇(PG)制备对苯型不饱和聚酯树脂(UPR),然后与表面改性后的MgO粉体机械共混制备了MgO/UPR复合材料,考察改性后MgO粉体在UPR基体中的分散情况及其对MgO/UPR复合材料动态热力学性能、耐热性及硬度的影响。XRD、FTIR和SEM测试结果表明,经硬脂酸钠表面修饰处理的MgO粉体表面包覆了一层有机高分子链,在UPR基体中分散均匀。通过动态热机械分析仪(DMA)的分析测试可知,当MgO质量分数为9%时,MgO/UPR复合材料具有最佳的综合力学性能及耐热性,储能模量随温度的升高下降趋势最为平缓,玻璃化转变温度(L)达到191℃,比纯UPR提高了66℃。硬度测试结果表明,当MgO质量分数为4%时,MgO/UPR复合材料的巴氏硬度达到最大值HBa44,比纯UPR提高了18.9%。","authors":[{"authorName":"王静","id":"83c13d2b-2d66-4338-8641-b7f6bbf3ad3b","originalAuthorName":"王静"},{"authorName":"范力仁","id":"1aeb4de6-a2f1-49f1-920d-596303fe8fe6","originalAuthorName":"范力仁"},{"authorName":"徐素梅","id":"e570351d-b072-448b-a3bd-3db9d7dfe330","originalAuthorName":"徐素梅"},{"authorName":"曾鸣","id":"af89edb8-6047-4a42-b9da-e1a591f69293","originalAuthorName":"曾鸣"},{"authorName":"刘庆","id":"30503470-eb27-4016-acc7-6a5a350a7d39","originalAuthorName":"刘庆"}],"doi":"","fpage":"65","id":"3e2b363b-e371-4447-8807-6b2fba60157f","issue":"6","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"45878da9-4168-4efe-b212-668352d0a9a0","keyword":"对苯型不饱和聚酯树脂(UPR)","originalKeyword":"对苯型不饱和聚酯树脂(UPR)"},{"id":"bc1c95bf-80de-42b4-b147-b5ac4ef904ae","keyword":"MgO粉体","originalKeyword":"MgO粉体"},{"id":"c7339740-fd43-4c6d-9237-428486e15076","keyword":"表面改性","originalKeyword":"表面改性"},{"id":"52f10910-90ae-4879-bdea-1682dc34e071","keyword":"动态热力学性能","originalKeyword":"动态热力学性能"},{"id":"22590229-3bb0-4343-b0d0-a1f31dc8da02","keyword":"硬度","originalKeyword":"硬度"}],"language":"zh","publisherId":"fhclxb201106011","title":"MgO/不饱和聚酯树脂复合材料的制备与性能","volume":"28","year":"2011"},{"abstractinfo":"采用传统的电子陶瓷制备工艺制备了BSTO/Mg2SiO4/MgO复合材料,并对样品的结构及其介电性能进行了表征与分析,讨论了Mg2SiO4/MgO掺杂对BSTO/Mg2SiO4/MgO复合材料结构和性能的影响.结果表明,与前其他掺杂改性的BSTO复合材料相比,BSTO/Mg2SiO4/MgO复合材料不仅可以在较低的温度烧结致密,而且在介电常数降低的同时,仍能保持较高的可调性,如BSTO/39wt%Mg2SiO4/17wt%MgO的介电常数εr为~80.21,在2kV/mm的直流偏置电场下,其可调性达到~12%,介电损耗为~0.003.","authors":[{"authorName":"陈莹","id":"11f027c6-c72c-4d84-8a8b-10988fac0214","originalAuthorName":"陈莹"},{"authorName":"董显林","id":"5562674b-cce6-4e87-bcb5-d0d4eed73365","originalAuthorName":"董显林"},{"authorName":"高敏","id":"42a1a6b3-25b0-4a40-ae9e-a9e944f1be3f","originalAuthorName":"高敏"},{"authorName":"梁瑞虹","id":"3a22e56e-a85e-4450-b640-1f51c575f908","originalAuthorName":"梁瑞虹"},{"authorName":"曹菲","id":"97e54b23-4e17-438c-9b66-3154b75113f5","originalAuthorName":"曹菲"}],"doi":"10.3321/j.issn:1000-324X.2005.04.040","fpage":"1013","id":"1758fc2f-e0db-42c8-b3cc-7756fe693208","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"14742d2e-65f0-4c6e-a814-9c973c62f7f0","keyword":"钛酸锶钡","originalKeyword":"钛酸锶钡"},{"id":"83a9f4ad-d5e4-4c04-9bca-071348de789b","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"6f00a26a-e86b-452e-9ad7-3b9dbb34b1eb","keyword":"介电性能","originalKeyword":"介电性能"},{"id":"4d0b5ef7-fa1a-4f19-acbd-818be602ebe8","keyword":"可调性","originalKeyword":"可调性"}],"language":"zh","publisherId":"wjclxb200504040","title":"BSTO/Mg2SiO4/MgO复合材料的介电性能研究","volume":"20","year":"2005"},{"abstractinfo":"就熔融钢液对MgO-SiC复合材料的熔损进行了分析,实验后发现,熔钢对MgO-SiC复合材料有明显的熔蚀,对试验后耐火材料和钢液之间的反应层进行了X射线衍射分析、电镜和能谱分析.结果表明:高温下,耐火材料和熔钢之间反应层中硅酸盐低熔相的流失破坏了复合材料的结构,由此造成复合材料的熔损.","authors":[{"authorName":"魏耀武","id":"47fbfdbb-b011-49b9-a465-7fc566ded04f","originalAuthorName":"魏耀武"},{"authorName":"李楠","id":"802e930f-5378-42dc-8a69-1204debe3989","originalAuthorName":"李楠"},{"authorName":"刘加善","id":"96c330fa-f0fc-4a3c-8d73-337c25e0cd3d","originalAuthorName":"刘加善"},{"authorName":"刘卫新","id":"86bbc91d-ff30-44f7-90b4-4737cc5490ba","originalAuthorName":"刘卫新"},{"authorName":"王炎平","id":"a130f00e-ad0e-4a47-ba09-6e716af36404","originalAuthorName":"王炎平"}],"doi":"","fpage":"26","id":"48b04762-8c9f-4378-8d46-d4505bb6981e","issue":"1","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"93090850-f950-4aa0-9ed7-a988c72254f6","keyword":"MgO-SiC复合材料","originalKeyword":"MgO-SiC复合材料"},{"id":"38504316-3ff3-4568-a87c-74faeb93220e","keyword":"钢水","originalKeyword":"钢水"},{"id":"4a649c8b-5552-4a42-9da0-10f90ea31dab","keyword":"熔损","originalKeyword":"熔损"}],"language":"zh","publisherId":"gsytb200801006","title":"熔钢对MgO-SiC复合材料的熔损","volume":"27","year":"2008"},{"abstractinfo":"通过液态原位反应合成制备MgO/Mg2Si增强Mg-Li基复合材料,利用TEM对增强相形态及界面结构进行了观察.实验结果表明,复合材料中增强粒子与基体界面结合良好,无反应物生成.确定了增强粒子与基体的界面取向关系,MgO与基体α相的晶体学关系为[100]MgO//[40(4)3]α,(011)MgO//((1)2(1)0)α;Mg2Si与基体β相的晶体学关系为 [310]MgSi//[411]β,(1(3)(1))MgSi//(001)β.","authors":[{"authorName":"卢庆亮","id":"c686b158-ed9a-4938-ab23-5d1f134b4acc","originalAuthorName":"卢庆亮"},{"authorName":"于化顺","id":"6939193c-50c3-4139-b1b8-e2c6fb8ec58d","originalAuthorName":"于化顺"},{"authorName":"闵光辉","id":"4689fe95-a901-4780-8bf2-aa5a4aee8865","originalAuthorName":"闵光辉"},{"authorName":"王常春","id":"d3d51683-39a9-46cb-b4e6-1e4148688aae","originalAuthorName":"王常春"},{"authorName":"冯刚","id":"96a7f1ec-4325-49c6-8ea8-6f83a793f874","originalAuthorName":"冯刚"}],"doi":"","fpage":"1427","id":"c08b254c-9917-4843-a08f-e4a59cbd0fdc","issue":"9","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"13cf6d9d-1863-47e8-b26c-03065661a7bd","keyword":"Mg-Li基复合材料","originalKeyword":"Mg-Li基复合材料"},{"id":"165a2dc7-411c-492d-9cb5-b7c5366b0a04","keyword":"粒子增强","originalKeyword":"粒子增强"},{"id":"82662dbe-aa94-4333-90ec-d1c9202b6dca","keyword":"界面结构","originalKeyword":"界面结构"}],"language":"zh","publisherId":"xyjsclygc200509021","title":"MgO/Mg2Si增强Mg-Li基复合材料的界面结构","volume":"34","year":"2005"}],"totalpage":7705,"totalrecord":77045}