为了研究碳离子注入对纯锆耐蚀性的影响,用MEVVA源对纯锆样品进行了1×1016ions/cm2至1×1017ions/cm2的碳离子注入,注入加速电压为40 kV.用X射线光电子能谱(XPS)和俄歇电子谱(AES)分析了注入样品表层元素的价态和深度分布.透射电镜(TEM)用来观察碳离子注入样品的微观结构;碳离子注入样品后相结构的变化用掠角X射线衍射(GAXRD)来检测.纯锆注入样品随后浸入1 mol/L的硫酸溶液中,测其极化曲线以评价其耐蚀性.发现:碳离子注入极大地提高了纯锆基体的耐蚀行为,剂量越高,耐蚀性越好.最后,对碳离子注入导致纯锆基体腐蚀行为发生改变的机理进行了讨论.
In order to study the effect of carbon ion implantation on the aqueous corrosion behavior of zirconium, specimens were implanted with carbon ions with fluence ranging from 1 × 1016 ions/cm2 (1E 16C) to 1 × 1017 ions/cm2, using a metal vapor vacuum arc source (MEVVA) at an extraction voltage of 40 kV. The valence states and depth distributions of elements in the surface layer of the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES),respectively. Transmission electron microscopy (TEM) was used to examine the microstructure of the carbon-implanted samples. Glancing angle X-ray diffraction (GAXRD) was employed to examine the phase transformation due to the carbon ion implantation. The potentiodynamic polarization technique was employed to evaluate the aqueous corrosion resistance of implanted zirconium in a 1 mol/L H2SO4 solution. It was found that a significant improvement was achieved in the aqueous corrosion resistance of zirconium implanted with carbon ions. The higher the fluence, the better the corrosion resistance.Finally, the mechanism of the corrosion behavior of carbon-implanted zirconium was discussed.
参考文献
[1] | 李中奎,周廉,李佩志,张建军,薛祥义,宋启忠.表面状态对Zr4合金抗疖状腐蚀性能的影响[J].稀有金属材料与工程,1999(06):380-382. |
[2] | 李中奎,刘建章,李佩志.新锆合金在两种不同介质中的耐蚀行为[J].稀有金属材料与工程,1999(02):101-104. |
[3] | 李中奎,刘建章,朱梅生.合金元素对Zr-Sn-Fe-Cr-Nb合金性能的影响[J].稀有金属材料与工程,1996(05):43-48. |
[4] | 杨芳林,张建军,宋启忠.锆合金管材氢化物生长方式的研究[J].稀有金属材料与工程,1999(04):214. |
[5] | JIAN XU;XINDE BAI;YUDIAN FAN .Studies on the corrosion behavior of yttrium-implanted zircaloy-4[J].Journal of Materials Science,2000(24):6225-6229. |
[6] | Etoh Y;Shimada S;Kikuchi K .[J].Journal of Nuclear Science and Technology,1992,29(12):1173. |
[7] | Ashworth V;Baxter D;Grant W A et al.[J].Corrosion Science,1976,16:775. |
[8] | Huble G K;Mccafferty E .[J].Corrosion Science,1980,20:103. |
[9] | Bai X D;Zhu D H;Liu B X .[J].Nuclear Instruments and Methods in Physics Research B:Beam Interaction with Materials and Atoms,1995,103:440. |
[10] | Yongliang Li;Tonghe Zhang;Xiaoyan Wang .Structure of corrosion resistance on H13 steels with titanium and carbon implantation[J].Surface & Coatings Technology,2000(0):205-208. |
[11] | Onate J I;Alonso F;Garcia A .[J].Thin Solid Films,1998,317:471. |
[12] | Mikklelsen N J;Straede C A .[J].Surface and Coatings Technology,1992,51:152. |
[13] | Wagner C D;Riggs W M;Davis L E.A Reference Book of Standard Data for Use in X-Ray Photoelectron Spectroscopy[M].Minnesota:Perkin-Elmer Corporation,1980:100. |
[14] | Pourbaix M.Atlas of Electrochemical Equilibria in Aqueous Solutions[M].Houstan:N ACE,1974:223. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%