欢迎登录材料期刊网

材料期刊网

高级检索

为提高316L奥氏体不锈钢的抗磨蚀性能,选用膏剂渗硼技术对316L奥氏体不锈钢表面进行硼-稀土共渗处理.采用电子显微镜、能谱仪、X射线衍射仪和显微硬度计分析共渗层组织形貌、相组成及硬度,并利用超声波振荡空蚀仪和喷射式冲刷腐蚀试验机研究共渗层的抗空蚀、冲蚀性能.结果表明,316L不锈钢表面B-RE共渗层组织致密,齿形平坦,表层为一薄层单一FeB相,内层为Fe2B 、Cr7C3以及基体相γ-Fe,并出现Cr元素富集现象.共渗后显微硬度高达1654~ 2124 HV,由表及里呈逐渐下降趋势.磨蚀试验表明,共渗层的抗空蚀能力比基材提高1个数量级,抗冲蚀性能明显提高,冲蚀机理由基材的机械冲击转变为共渗层的流体冲刷作用.

In order to improve the wear resistance of 316L austenitic stainless steel,B-RE penetrating layer was synthesized by solid boronizating on its surface.Microstructure,constituent phases and microhardness of the penetrating layer were investigated by means of SEM,EDS,XRD and microhardness tester,respectively.Cavitation erosion and erosion corrosion resistance of the penetrating layer were also studied by means of ultrasonic vibrator and erosion corrosion tester.The results show that the penetrating layer is compact and flat.Outer layer of the penetrating layer exhibits a single FeB phases,while inner layer is mainly composed of Fe2B,Cr2B and γ-Fe matric phase and Cr element segregated in the transition zone.The microhardness of the penetrating layer is 1654-2124 HV and the microhardness gradually decreases from the top surface to the substrate.Cavitation erosion resistance of the penetrating layer is one order of magnitude higher than that of the substrate.The erosion corrosion resistance of penetrating layer is also significantly improved and the erosion corrosion mechanisms evolve from mechanical impact for the substrate to fluid erosion effect for the penetrating layer.

参考文献

[1] 张春华;刘杰;吴臣亮;张松;关锰;谭俊哲.316L不锈钢表面激光熔覆钴基合金组织及锌蚀机理[J].焊接学报,2015(1):19-22.
[2] 张松;韩维娜;李杰勋;张春华;关锰;谭俊哲.等离子堆焊原位合成WC增强Ni基合金改性层[J].沈阳工业大学学报,2015(3):268-272.
[3] Iskender Akkurt;Adrian Calik;Hakan Akyildinm.The boronizing effect on the radiation shielding and magnetization properties of AISI 316L austenitic stainless steel[J].Nuclear engineering and design,20111(1):55-58.
[4] 侯东坡;宋仁伯;项建英;陈舒阳;任培东.固溶处理对316L不锈钢组织和性能的影响[J].材料热处理学报,2010(12):61-65.
[5] 孙建华;刘金龙;王庆良;吴高峰.医用316L不锈钢表面改性的研究进展[J].材料导报,2011(9):95-98.
[6] 尹研;李翠玲;刘成松;吴海波;贾亚斌;郭莉莉;秦林.AISI316不锈钢表面等离子渗硼及摩擦磨损性能的研究[J].表面技术,2015(2):43-47.
[7] 陈树旺;陈卫东.固体渗硼技术的研究与应用[J].热处理,2011(3):1-8.
[8] Huseyin Cimenoglu;Erdem Atar;Amir Motallebzadeh.High temperature tribological behaviour of borided surfaces based on the phase structure of the boride layer[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,20141/2(1/2):152-158.
[9] Campos-Silva, I.;Ortiz-Domínguez, M.;Bravo-Bárcenas, O.;Do?u-Ruiz, M.A.;Bravo-Bárcenas, D.;Tapia-Quintero, C.;Jiménez-Reyes, M.Y..Formation and kinetics of FeB/Fe_2B layers and diffusion zone at the surface of AISI 316 borided steels[J].Surface & Coatings Technology,20102(2):403-412.
[10] I. Campos-Silva;M. Flores-Jiménez;G. Rodríguez-Castro;E. Hernández-Sánchez;J. Martínez-Trinidad;R. Tadeo-Rosas.Improved fracture toughness of boride coating developed with a diffusion annealing process[J].Surface & Coatings Technology,2013:429-439.
[11] 杨哲;杨浩鹏;吴晓春;濮胜君.H13钢双保温固体渗硼高温磨损机理[J].材料研究学报,2014(3):220-226.
[12] Lee SY.;Kim GS.;Kim BS..Mechanical properties of duplex layer formed on AISI 403 stainless steel by chromizing and boronizing treatment[J].Surface & Coatings Technology,20040(0):178-184.
[13] 邢志松;王宝平.渗硼工艺试验及应用[J].金属热处理,2013(8):99-102.
[14] K. H. Lo;F. T. Cheng;H. C. Man.Cavitation erosion mechanism of S31600 stainless steel laser surface-modified with unclad WC[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20031/2(1/2):168-180.
[15] 薛伟;陈昭运.空蚀破坏的微观过程研究[J].机械工程材料,2005(2):59-62.
[16] 苏振国;安健;田旭;陆有;杨永利;孙世杰.稀土粉末渗硼45钢的磨损与腐蚀性能[J].材料热处理学报,2009(6):183-186,190.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%