欢迎登录材料期刊网

材料期刊网

高级检索

利用真空熔烧工艺制备了WCp-NiCrBSi/耐热钢复合材料,棒状增强相WCp-NiCrBSi均匀分布于基体表层,实现了复合材料的“硬韧匹配”.利用SEM、EDS和显微硬度等手段,对复合材料增强相和界面的微观组织结构进行了表征.在环-盘式试验机上对复合材料的高温磨损性能进行了研究,并与基体材料进行对比.结果表明,增强相WCp分布均匀,NiCrBSi合金在凝固过程中生成了γ-Ni(Ni3 Si)、Ni-B、Cr-B和多元共晶物相.复合材料的增强相与基体之间为良好冶金结合,没有裂纹、气孔等缺陷.由于界面元素的互扩散,在增强相一侧发生了等温凝固,生成了γ-Ni固溶体层;在基体一侧的扩散影响区内弥散析出了大量的Fe-Cr-B化合物.在室温至600℃温度范围内复合材料的耐磨性都优于基体材料,复合材料的耐磨性优势在室温下最大,并随着温度的升高而逐渐减小.室温下,由于WCp凸出于磨损表面阻止了金属材料之间的直接接触,复合材料的磨损机制为轻微粘着磨损.在300℃和600℃下,由于磨损表面氧化物膜的形成,WCp-NiCrBSi/耐热钢复合材料的磨损机制转变为轻微氧化磨损.

参考文献

[1] 鲍崇高,王恩泽,高义民.颗粒体积分数对Al2O3/钢基复合材料高温抗磨性的影响[J].复合材料学报,2001,18(2):61-64.Bao Chonggao,Wang Enze,Gao Yimin.Effect of the volume fraction of particles on elevated temperature wear resistance of Al2O3/steel composites[J].Acta Materiae Compositae Sinica,2001,18(2):61-64.
[2] 王恩泽,徐雁平,鲍崇高.Al2O3颗粒/耐热钢复合材料的制备及高温磨料磨损性能[J].复合材料学报,2004,21(1):56-60.Wang Enze,Xu Yanping,Bao Chonggao.Fabrication of Al2O3/heat-resistant steel composite and its wear-resistance at high temperature and abrasive[J].Acta Materiae Compositae Sinica,2004,21 (1):56-60.
[3] Berns H,Koch S.High temperature sliding abrasion of a nickel-base alloy and composite[J].Wear,1999,225-229:154-162.
[4] Berns H,Wewers B.Development of an abrasion resistant steelcomposite with in situ TiC particles[J].Wear,2001,250-251:1386-1395.
[5] 陈劲松.激光烧结WC颗粒增强镍基合金块体成形实验研究[J].中国激光,2010,37(3):868-872.Chen Jinsong.Experimental research on formation of laser sintering WC particles reinforced Ni-base alloy bulk[J].Chinese Journal of Lasers,2010,37(3):868-872.
[6] 侯书增,鲍崇高,付青然.硬质合金/高铬铸铁基复合材料的界面特性及磨损性能研究[J].西安交通大学学报,2012,46(5):73-78.Hou Shuzeng,Bao Chonggao,Fu Qingran.Interfacial characteristics and abrasive wear behavior of cemented carbide/high-Cr white cast iron composite[J].Journal of Xi'an Jiaotong University,2012,46(5):73-78.
[7] Villars P,Prince A,Okamoto H.Handbook of ternary alloy phase diagrams[M].Ohio:ASM International,Metals Park,1995:5508-5513.
[8] Massalski T B.Binary alloy phase diagrams[M].Ohio:ASM International,Metals Park,1986:370-371.
[9] Yuan X,Kang C Y,Kim M B.Microstructure and XRD analysis of brazing joint for duplex stainless steel using a Ni Si-B filler metal[J].Materials Characterization,2004,60(9):923-931.
[10] Tung S K,Lim L C,Lai M O.Solidification phenomena in nickel base brazes containing boron and silicon[J].Scripta Materialia,1996,34(5):763-769.
[11] Wu Na,Li Yajiang,Wang Juan.Microstructure of Ni-NiCr laminated composite and Cr18-Ni8 steel joint by vacuum brazing[J].Vacuum,2012,86(12):2059-2063.
[12] OuC L,Liaw D W,Du Y C,Shiue P K.Brazing of 422stainless steel using the AWS classification BNi-2 braze alloy[J].Journal of Materials Science,2006,41(19):6353-6361.
[13] Jiang W,Gong J,Tu S T.A new cooling method for vacuum brazing of a stainless steel plate-fin structure[J].Materials & Design,2010,31(1):648-653.
[14] Jiang J,Stott F H,Stack M M.A generic model for dry sliding wear of metals at elevated temperatures[J].Wear,2004,256(9/10):973-985.
[15] Pauschitz A,Roy M,Franek F.Mechanisms of sliding wear of metals and alloys at elevated temperatures[J].Tribology International,2008,41(7):584-602.
[16] Inman I A,Datta P S.Studies of high temperature sliding wear of metallic dissimilar interfaces Ⅳ:Nimonic 80A versus Incoloy 800HT[J].Tribology International,2011,44 (12):1902-1919.
[17] Inman I A,Rose,S R,Datta P K.Studies of high temperature sliding wear of metallic dissimilar interfaces Ⅱ:Incoloy MA956 versus Stellite 6[J].Tribology International,2006,39(11):1361-1375.
[18] Wilson J E,Stott F H,Wood G C.The development of wearprotective oxides and their influence on sliding fraction[C]//Proceeding of the Royal Society of London.London:Royal Society of London,1980:557-574.
[19] Wei M X,Wang S Q,Wang L.Effect of tempering conditions on wear resistance in various wear mechanisms of H13 steel[J].Tribology International,2011,44(7/8):898-905.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%