借助疲劳试验机及SEM,研究了应力比对J55钢级疲劳裂纹扩展性能的影响,并对断口形貌进行分析.结果表明:随着应力比增大,进入快速裂纹扩展区的△K变小,对于应力比0.1,低Paris区断裂模式为沿晶体学平面发生的穿晶断裂,Paris线性部分为由双滑移机制控制的疲劳条带断裂,高Paris区为疲劳条带断裂和延性静态断裂相结合的断裂模式;应力比为0.3、0.5与应力比为0.1的断裂模式相似;对于应力比0.7,沿晶体学平面发生穿晶断裂模式贯穿整个Paris区.
The fatigue crack growth properties of the J55 steel were studied by means of SEM and the fatigue test e-quipment, and the fracture morphologies were analyzed. The results show that △K corresponding to the acce{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本文对酚醛SMC的模压工艺进行了研究,确定了酚醛SMC模压成型时的模压温度、成型压力、保温时间等工艺参数。","authors":[{"authorName":"薛桂玲","id":"4c8e6f23-57da-495b-ab6d-193464b40985","originalAuthorName":"薛桂玲"},{"authorName":"高红梅","id":"aac1926c-a2b0-42e0-ad3b-2d9e0c14dde7","originalAuthorName":"高红梅"}],"doi":"10.3969/j.issn.1003-0999.2001.03.009","fpage":"27","id":"73863b5c-af65-4f05-8cd7-f0bbd220a8be","issue":"3","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"02f403cf-71aa-40a4-934e-229be7992e9e","keyword":"模压工艺","originalKeyword":"模压工艺"},{"id":"0722d961-3ff7-4658-9772-7df48dd79b29","keyword":"酚醛SMC","originalKeyword":"酚醛SMC"},{"id":"7b77f927-1a4f-4c57-afbe-773539afbe2b","keyword":"模压温度","originalKeyword":"模压温度"},{"id":"cc456e80-735f-4c78-b74f-be7f551ad366","keyword":"成型压力","originalKeyword":"成型压力"},{"id":"d4f31d57-4a00-473b-8180-085cb3881e05","keyword":"保温时间","originalKeyword":"保温时间"}],"language":"zh","publisherId":"blgfhcl200103009","title":"酚醛SMC模压工艺参数的确定","volume":"","year":"2001"},{"abstractinfo":"内着色技术是SMC表面装饰的重要技术.为达到满意的装饰效果,本文对着色剂的选择以及对其着色性能产生影响的诸多因素进行了详细的讨论.","authors":[{"authorName":"郑学森","id":"cdc1e323-fdef-41ea-ac42-c0b685848f57","originalAuthorName":"郑学森"},{"authorName":"岳晓东","id":"30841376-2748-4266-9615-fc5be495c6ee","originalAuthorName":"岳晓东"},{"authorName":"马世勇","id":"4ed6e4e6-c86e-4bb7-9211-5dd8c6dd8061","originalAuthorName":"马世勇"}],"doi":"10.3969/j.issn.1003-0999.2003.01.015","fpage":"48","id":"7027649c-87ab-4852-b1c9-7078b0ba9824","issue":"1","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"817c6067-d964-4752-8ca4-dda8c6a3d5f3","keyword":"SMC","originalKeyword":"SMC"},{"id":"11ff6ac2-71d0-44b4-9e29-81ca0e7693f5","keyword":"内着色","originalKeyword":"内着色"},{"id":"3b63e209-b032-4b5e-a159-8ae1dc8d2bd0","keyword":"着色剂","originalKeyword":"着色剂"},{"id":"c8c8c257-b3e7-4ce3-8ebb-880e8a605fc6","keyword":"结构填料","originalKeyword":"结构填料"}],"language":"zh","publisherId":"blgfhcl200301015","title":"SMC内着色技术","volume":"","year":"2003"},{"abstractinfo":"本文从原料进厂质量控制、SMC工艺管理、制品压制成型质量管理等方面介绍了SMC生产中的质量管理事项,并介绍了一些常见问题解决方法.","authors":[{"authorName":"卞忠义","id":"59ff1df9-fb4c-49ae-8669-aed7ea0ac3fe","originalAuthorName":"卞忠义"},{"authorName":"王宇洋","id":"31f7983e-3847-44fd-b734-d336a72bae9c","originalAuthorName":"王宇洋"}],"doi":"10.3969/j.issn.1003-0999.2002.04.016","fpage":"43","id":"ed04bce4-b0c0-495d-9006-d7ae528a4ed4","issue":"4","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"f4c84694-a6a6-4119-b277-f0fe9714d24f","keyword":"SMC工艺","originalKeyword":"SMC工艺"},{"id":"ae80785a-98e5-4d91-80c7-fb328bd5040f","keyword":"质量","originalKeyword":"质量"},{"id":"9d93b018-221c-45c0-8d5d-edf4a7885a27","keyword":"管理","originalKeyword":"管理"}],"language":"zh","publisherId":"blgfhcl200204016","title":"SMC生产工艺质量管理","volume":"","year":"2002"},{"abstractinfo":"本文主要对高光表面SMC进行了研究.采用正交实验设计法对影响SMC表面光泽度的主要影响因素LPA、MgO、CaCO3和模压温度进行了系统的探讨与分析,以SMC制品的表面光泽度和弯曲强度为参考值,得出了4因素对SMC制品表面光泽度的影响趋势曲线.综合表面光泽度和弯曲性能得到一组进一步优化的SMC配方,根据该配方所压制的SMC制品的表面光泽度可达到90,并具有较好的力学性能.","authors":[{"authorName":"王海东","id":"647b16cb-7a21-41a9-9e29-3afb9c52af67","originalAuthorName":"王海东"},{"authorName":"王钧","id":"f18b8178-363f-4668-869c-2bac3bed48bb","originalAuthorName":"王钧"},{"authorName":"杨小利","id":"268daec2-2669-4d7d-bd38-4b95a65a1580","originalAuthorName":"杨小利"}],"doi":"10.3969/j.issn.1003-0999.2005.03.009","fpage":"34","id":"8e8f7e30-f92e-4c46-b0f1-b9894079d230","issue":"3","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"698f239f-2603-42f5-b94b-7c9ea69ce6ca","keyword":"SMC","originalKeyword":"SMC"},{"id":"e0551cbc-82c0-4573-97ce-f9d5951cd5ab","keyword":"高光表面","originalKeyword":"高光表面"},{"id":"1e9c1859-a2e3-4d17-89f5-3e6d5f6c7113","keyword":"表面光泽度","originalKeyword":"表面光泽度"},{"id":"9e1db323-cbb0-4443-8e60-5c6bf02da764","keyword":"弯曲强度","originalKeyword":"弯曲强度"}],"language":"zh","publisherId":"blgfhcl200503009","title":"高光表面SMC的研究","volume":"","year":"2005"},{"abstractinfo":"分别以甲苯二异氰酸酯(TDI)和氧化镁(MgO)/TDI体系作为增稠剂改性不饱和聚酯(UP)基片状模塑料(SMC),考察了单一增稠剂TDI和复配增稠剂MgO/TDI体系用量对SMC物理性能的影响.结果表明,TDI质量分数为7%,MgO/TDI质量比为1.5/6时,SMC能得到最小的收缩率和最好的力学性能.","authors":[{"authorName":"杜彬斌","id":"77f93e99-a660-4eaf-8335-9900794a3002","originalAuthorName":"杜彬斌"},{"authorName":"李军","id":"ad30bcb7-b28c-46cf-bb3e-17cf6ed18664","originalAuthorName":"李军"},{"authorName":"国岛和彦","id":"d0daea97-d61e-4605-bc6c-1a1ec48a177c","originalAuthorName":"国岛和彦"}],"doi":"10.3969/j.issn.1003-0999.2012.02.010","fpage":"44","id":"e9c1de6b-ede0-4eb0-8479-31f8c2802206","issue":"2","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"c91867a2-0c04-4fae-9f1d-0acebbf30088","keyword":"片状模塑料(SMC)","originalKeyword":"片状模塑料(SMC)"},{"id":"22ff1fd6-3dd7-4c82-8dda-9f5b0d85d2b0","keyword":"甲苯二异氰酸酯(TDI)","originalKeyword":"甲苯二异氰酸酯(TDI)"},{"id":"846b5ea0-2e28-4391-b389-75bde252ec47","keyword":"收缩率","originalKeyword":"收缩率"},{"id":"7017e8ba-ac7f-43e9-b032-ca71d027b501","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"blgfhcl201202010","title":"TDI增稠改性SMC研究","volume":"","year":"2012"},{"abstractinfo":"本文介绍了SMC树脂的基本要求、质量控制技术及生产中应注意的问题,对有关生产厂家具有一定的借鉴意义.","authors":[{"authorName":"冯增申","id":"f76cb9d0-1731-4cde-aa6e-7ebbc7fe8757","originalAuthorName":"冯增申"},{"authorName":"邹宇知","id":"e32550cb-4f68-421c-a0ac-10f1109e702d","originalAuthorName":"邹宇知"}],"doi":"10.3969/j.issn.1003-0999.2000.02.008","fpage":"26","id":"2d20772e-9389-46f3-a027-da647fab2440","issue":"2","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"bf98df8e-e5ce-41fe-85b0-1ee35a03ed14","keyword":"SMC","originalKeyword":"SMC"},{"id":"1a0eb441-a2b6-40f2-b251-b7338833cffc","keyword":"树脂质量","originalKeyword":"树脂质量"},{"id":"a073add6-9bb7-4e0e-a1e2-c9af587a4c92","keyword":"一致性","originalKeyword":"一致性"}],"language":"zh","publisherId":"blgfhcl200002008","title":"SMC树脂及其质量控制技术","volume":"","year":"2000"},{"abstractinfo":"本文介绍了一种以组分材料性能为基础确定SMC材料平面及交叉方向热弹性能的计算预测方法.将SMC材料模型看作对称的三层复合材料结构,因此采用经典的层板理论来探讨SMC的有效变形特征.中心层的性能用单向复合材料来表达,用Kerner-Hashin理论来预测颗粒填料复合材料的性能;对片状颗粒填料的复合材料Lewis-Nielser理论可使试验与理论数据很好符合.但体系加入低收缩添加剂对性能的影响不能仅用力学模型来说明.","authors":[{"authorName":"李永国","id":"aaa6490f-4259-4304-9627-74c1046867ca","originalAuthorName":"李永国"},{"authorName":"何盼","id":"cca9a9c9-525e-4a26-aef9-21ba4e440860","originalAuthorName":"何盼"},{"authorName":"郭泓","id":"fd3c6f94-7a2d-4869-9cc3-d4f5c2d528b9","originalAuthorName":"郭泓"}],"doi":"10.3969/j.issn.1003-0999.2003.01.004","fpage":"13","id":"59819b2f-df13-4ce3-96d6-fa70e40e89d5","issue":"1","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"ecb77ef8-e212-4a6d-a374-0ead97c245e5","keyword":"SMC","originalKeyword":"SMC"},{"id":"2c39a83a-0c01-4053-aeba-c6ce892431cc","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"blgfhcl200301004","title":"SMC的力学性能预测","volume":"","year":"2003"},{"abstractinfo":"本文研究了SBS和SBS/ PS体系改性SMC复合材料.实验结果表明,SBS能显著降低SMC的收缩率,使其控制在0.3~0.5‰,同时也改善了SMC材料的力学性能SBS/PS体系的抗收缩效果比SBS好,可以实现零收缩.通过SEM分析,SBS的热膨胀和在SBS-UP界面处形成的微孔是其低收缩化的主要原因.","authors":[{"authorName":"李忠恒","id":"b1072451-6442-48e2-ad51-a99bf66f2c64","originalAuthorName":"李忠恒"},{"authorName":"张宁","id":"91cea72c-3f2a-43a2-9544-0e362b9fc153","originalAuthorName":"张宁"},{"authorName":"陶国良","id":"4cfe54bf-ae07-4ecb-b3f4-092ca92a5140","originalAuthorName":"陶国良"}],"doi":"10.3969/j.issn.1003-0999.2007.04.009","fpage":"34","id":"47199d42-4b9d-410f-98f4-27ac83d2030d","issue":"4","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"cd5f2df8-da88-4c0e-b9f9-fc60197af94c","keyword":"SBS","originalKeyword":"SBS"},{"id":"72482103-84e1-4206-b339-bdaecdb6e0fa","keyword":"SMC","originalKeyword":"SMC"},{"id":"f3d47106-5963-485d-90d2-7c8294b878b0","keyword":"低收缩添加剂","originalKeyword":"低收缩添加剂"},{"id":"5f8008b1-ff02-4aae-a3b8-7f50d5062aa1","keyword":"复合材料","originalKeyword":"复合材料"}],"language":"zh","publisherId":"blgfhcl200704009","title":"SBS改性SMC复合材料的研究","volume":"","year":"2007"},{"abstractinfo":"根据填料球-球双峰堆砌理论,通过激光粒度分析仪测定了几种不同比例填料复合后的粒径分布,使用连续级分法计算复合后填料的空隙率,得到了可实现密堆砌填料的类型和复合比例;通过测试树脂糊黏度、片状模塑料(SMC)试样的力学性能以及模压产品的表面波纹,研究了密堆砌填料对SMC生产的工艺性、力学性能以及模压产品表面质量的影响.结果表明,使用密堆砌的填料可实现树脂糊在初始黏度相同的情况下多加入填料30份,同时,SMC的冲击性能有明显的提高,且产品的表面质量得到了显著的改善.","authors":[{"authorName":"孙巍","id":"04f87e51-b26c-42f1-99e6-feb0ee518db4","originalAuthorName":"孙巍"},{"authorName":"翟国芳","id":"3b248ffe-a2a5-4e18-b4a3-8906ee6f5ad6","originalAuthorName":"翟国芳"},{"authorName":"冯威","id":"650cacfe-fe7d-41fd-97f9-caf21f2ea0f3","originalAuthorName":"冯威"},{"authorName":"王继辉","id":"e656f78e-059e-48ba-a03d-578f6b030cf5","originalAuthorName":"王继辉"}],"doi":"","fpage":"51","id":"46aadd62-5166-4421-88d3-d665160568e5","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"c2ab7a09-c560-4638-87a4-3dc94397b7c4","keyword":"填料","originalKeyword":"填料"},{"id":"77d87a72-1ee1-44be-a61f-fc7fb693c64a","keyword":"片状模塑料","originalKeyword":"片状模塑料"},{"id":"7e93a195-159e-4d21-a3d7-f3afffedd2db","keyword":"密堆砌","originalKeyword":"密堆砌"},{"id":"71c8989f-94ab-420f-bd9f-3a6eccb10205","keyword":"粒径分布","originalKeyword":"粒径分布"}],"language":"zh","publisherId":"gfzclkxygc200904014","title":"填料堆积密度对SMC工艺及性能的影响","volume":"25","year":"2009"},{"abstractinfo":"试验采用UV-234作为SMC的紫外光吸收剂,考察了UV-234加入量对SMC固化性能和耐老化性能的影响,同时考察了模压时间和储存条件对制品耐老化性能的影响,并进行了自然气候老化、紫外光加速老化和热水老化试验.结果表明,UV-234能够提高SMC的耐老化性能,而且随着加入量的不断增大,耐老化性能先变好后变差,加入量为0.5份时效果最佳;模压时间对制品耐老化性能有一定程度影响,模压时间为4min时,效果略优于2min及6min;在室外自然气候条件下,SMC样板发生明显的黄变老化现象,而在密封储存条件下,未出现黄变老化的迹象,效果良好;紫外光加速老化试验表明,紫外光对制品的耐老化性能有较大程度影响;热水老化使SMC样板的力学性能有所降低,但保持率在80%以上.","authors":[{"authorName":"李忠恒","id":"23fcee1d-9e26-4c70-bdfe-70c6f9d76659","originalAuthorName":"李忠恒"},{"authorName":"李军","id":"d867b20f-663f-4e5f-91b6-f59faed0a7ca","originalAuthorName":"李军"},{"authorName":"毛坚伟","id":"a824e4ac-e2c2-4f72-8390-8e856a7c7108","originalAuthorName":"毛坚伟"}],"doi":"10.3969/j.issn.1003-0999.2010.06.015","fpage":"63","id":"82f8ff93-0757-466d-8d15-f2eff67a638a","issue":"6","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"932b9629-e2ca-4038-81c3-46d89f3b2d79","keyword":"SMC","originalKeyword":"SMC"},{"id":"2df0d39d-633e-4cae-b703-54cd139e55c4","keyword":"黄变","originalKeyword":"黄变"},{"id":"b884d430-eee6-4b97-a045-86e02e1ac5b0","keyword":"耐老化","originalKeyword":"耐老化"},{"id":"c2e63620-3f9a-4b69-a8ba-bf25c82b0e3f","keyword":"紫外光吸收剂","originalKeyword":"紫外光吸收剂"}],"language":"zh","publisherId":"blgfhcl201006015","title":"SMC制品耐老化性能的试验研究","volume":"","year":"2010"}],"totalpage":115,"totalrecord":1149}