目的:对比研究ZrO2-Y2 O3和A12 O3-TiO2涂层的抗高温氧化性能。方法采用等离子喷涂工艺,以NiCrAl为粘接层,在铜合金基体表面分别制备ZrO2-Y2 O3和A12 O3-TiO2涂层,测试涂层的显微组织、元素种类及含量、显微硬度,并在相同条件下测试涂层的抗高温氧化性能。结果 ZrO2-Y2 O3和A12 O3-TiO2涂层都具有明显的层状结构,涂层结合紧密,内部孔洞细小,显微硬度分别为423HV 和628HV。这两种涂层都具有一定的抗高温氧化性能,NiCrAl粘结层是整个涂层最薄弱的环节。结论等离子喷涂ZrO2-Y2 O3涂层的抗高温氧化性能优于A12 O3-TiO2涂层。
Objective In order to study the oxidation resistance of ZrO2-Y2 O3 and A12 O3-TiO2 coatings, ZrO2-Y2 O3 and A12 O3-TiO2 coatings with NiCrAl bonding layer were successfully prepared by plasma spraying process. Methods The microstruc-tures, element types and levels and micro-hardness of the different coatings were studied by metallurgical microscopy, scanning e-lectron microscopy (SEM), energy dispersive spectrometer (EDS) and micro-hardness measurement. Oxidation resistance of all the specimens were tested under the same conditions. Results Both ZrO2-Y2 O3 and A12 O3-TiO2 coatings had a significant layer structure, good adhesion and low porosity. The micro-hardness of ZrO2-Y2 O3 and A12 O3-TiO2 coatings was 423HV and 628HV, respectively. Both ZrO2-Y2 O3 and A12 O3-TiO2 coatings had certain oxidation resistance. NiCrAl bonding layer was the weakest part of the whole coatings. Conclusion ZrO2-Y2 O3 coatings had better oxidation resistance than A12 O3-TiO2 coatings.
参考文献
[1] | G. W. Goward .Progress in coatings for gas turbine airfoils[J].Surface & Coatings Technology,1998(1/3):73-79. |
[2] | 周洪,李飞,何博,陆燕玲,王俊,孙宝德.等离子喷涂热障涂层的隔热性分析[J].中国有色金属学报,2007(10):1609-1615. |
[3] | 张燕,张行,刘朝辉,邓智平.热喷涂技术与热喷涂材料的发展现状[J].装备环境工程,2013(03):59-62. |
[4] | Nitin P. Padture;Maurice Gell;Eric H. Jordan .Thermal Barrier Coatings for Gas-Turbine Engine Applications[J].Science,2002(5566):280-284. |
[5] | 冯拉俊,惠博,梁天权.等离子喷涂NiAl-Al2O3梯度陶瓷涂层的性能研究[J].表面技术,2005(02):15-16,19. |
[6] | 徐心洁,贺毅,马东林,刘元忠.等离子喷涂Al_2O_3-13%TiO_2复合陶瓷涂层的组织及热氧化性能的研究[J].表面技术,2010(01):15-19. |
[7] | 成志芳,马壮,卢林.等离子喷涂Al2O3-13%TiO2涂层微观组织形貌分析[J].表面技术,2012(03):9-11. |
[8] | A. Rico;J. Rodriguez;E. Otero;P. Zeng;W. M. Rainforth .Wear behaviour of nanostructured alumina-titania coatings deposited by atmospheric plasma spray[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,2009(Pt.2):1191-1197. |
[9] | Jafarzadeh, K.;Valefi, Z.;Ghavidel, B. .The effect of plasma spray parameters on the cavitation erosion of Al_2O_3-TiO_2 coatings[J].Surface & Coatings Technology,2010(7):1850-1855. |
[10] | N.H.N. Yusoff;M.J. Ghazali;M.C. Isa;A.R. Daud;A. Muchtar;S.M. Forghani .Optimization of plasma spray parameters on the mechanical properties of agglomerated Al_2O_3-13%TiO_2 coated mild steel[J].Materials & design,2012(Aug.):504-508. |
[11] | 柯培玲,武颖娜,王启民,宫骏,孙超,闻立时.爆炸喷涂空心球形氧化锆热障涂层的抗热冲击性能[J].金属学报,2004(11):1179-1182. |
[12] | MORSI M S;EL GWAD S A A;SHOEIB M A et al.Effect of Air Plasma Sprays Parameters on Coating Performance in Zirconia-based Thermal Barrier Coatings[J].Int J Electro-chem Sci,2012,7:2811-2831. |
[13] | Andreas Hospach;Georg Mauer;Robert Vassen;Detlev Stover .Columnar-Structured Thermal Barrier Coatings (TBCs) by Thin Film Low-Pressure Plasma Spraying (LPPS-TF)[J].Journal of Thermal Spray Technology,2011(1/2):116-120. |
[14] | GARCIA E;MESQUITA-GUIMARA~ES J;MIRANZO P et al.Mullite and Mullite/ZrO2-7%Y2 O3 Powders for Thermal Spraying of Environmental Barrier Coatings[J].Journal of Thermal Spray Technology,2010,19(1/2):286-293. |
[15] | Kentaro Shinoda;Jose Colmenares-Angulo;Alfredo Valarezo;Sanjay Sampath .Effect of Deposition Rate on the Stress Evolution of Plasma-Sprayed Yttria-Stabilized Zirconia[J].Journal of Thermal Spray Technology,2012(6):1224-1233. |
[16] | 王世兴,袁涛,詹华,汪瑞军,王伟平.不同结构等离子喷涂热障涂层的性能研究[J].表面技术,2013(01):21-24,28. |
[17] | 黄燕滨,邵新海,宋高伟,仲流石.陶瓷涂层性能影响因素及工艺优化研究[J].装备环境工程,2012(01):90-93. |
[18] | 柯德庆,潘应君,童向阳.纯铜表面等离子喷焊Ni60涂层组织及性能的研究[J].表面技术,2013(04):91-93. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%