欢迎登录材料期刊网

材料期刊网

高级检索

为了从理论上探讨纳米粒子在基体材料中的分布规律,以纳米SiC质量分数为3%、5%、7%、9%的SiC/PTFE(聚四氟乙烯)复合材料为例,根据纳米SiC的半径(25nm)、密度(3.2g/cm^3)、质量分数和基体材料的密度(2.2g/cm^3),以10^-12g为质量单位、25nm:1像素为比例尺,建立了纳米粒子在基体中均匀/偏聚分布的三维仿真模型,基于其盒维数定量表征了不同团聚/偏聚程度的纳米粒子的分散度,并进行了力学实验验证。结果表明:均匀分布下随着纳米SiC粒子半径的不断增加,或体积分数的不断减小,其盒维数也逐渐减小;当SiC粒子半径超过100nm时,不再具有分形特性。偏聚分布下随着纳米SiC粒子(半径为50nm)间距的不断加大,或体积分数的不断减小,或层状、线状、团状分布的依次改变,其盒维数也逐渐减小;相同体积分数下偏聚分布的盒维数低于均匀分布;当粒子间距超过450nm时,不再具有分形特性。均匀分布下纳米SiC/PTFE复合材料的力学性能测试结果与其三维仿真模型的盒维数线性相关(|R|〉0.9)。盒维数可定量表征纳米粒子的分散度,并可用于预测纳米复合材料的宏观性能。

To study the distribution regularity of nano particles in matrix material theoretically, SiC/PTFE(Poly Tetra Fluoro Ethylene) composites with SiC mass fraction of 3%, 5%, 7% and 9% were used as examples. According to the radius (25 nm), the density (3.2 g/cm3), mass fraction of SiC particles and the density of PTFE matrix material(2.2 g/cm3 ), 3D simulation models of uniform/deviation distributed nano particles in matrix material were established with 10^-12 g for quality unit and to 25 nm : 1 pixel for the scale. Based on box dimensions, dispersions of various cluster/deviation nano particles were characterized quantitatively and verified by mechanical experiment. Experimental results indicate that the box dimension of SiC particles decreases gradually in uniform distribution with the continuous increment of their radius, or the decrement of their volume fractions, and fractal characteristics doesn't exist in the case of their radius above 100 nm. In another hand, the box dimension of SiC particles (50 nm for radius) decreases gradually in deviation distribution with the continuous increment of their span, or the decrement of their volume fractions, or varying of their distribution from layer and line to reunion, which is less than that in uniform distribution with the same volume fraction, and fractal characteristics doesn't exist in the case of their span beyond 450 nm. Linear correlations (IRIS0.9) are observed between test results of mechanical properties of SiC/PTFE composites and box dimensions of their 3D simulation models in uniform distribution. Dispersions of nano particles can be characterized quantitatively using box dimension, which can be used to predict macroscopic properties of composites.

参考文献

[1] Lai S Q,Li T S,Liu X J. The tribological properties of PTFEfilled with thermally treated nano - attapulgite [J]. TribologyInternational, 2006,39: 541-547.
[2] Xiang D H,Gu C J. A study on the friction and wear behaviorof PTFE filled with ultra - fine kaolin particulates [J].Materials Letters, 2006,60: 689-692.
[3] Friedrich K,Zhang Z, Schlarb A K. Effect of various fillerson the sliding wear of polymer composites [J]. CompositesScience and Technology,2005,65: 2329-2343.
[4] Burris D L,Sawyer W G. Improved wear resistance inalumina - PTFE nanocomposites with irregular shapednanoparticles [J]. Wear,2006,260(7/8) : 915-918.
[5] Su F H, Zhang Z Z,Liu W M. Friction and wear behavior ofhybrid glass/PTFE fabric composite reinforced with surfacemodified nanometer ZnO [J]. Wear,2008,265 : 311-3X8.
[6] 秦湘阁,刘国权.多晶体晶粒尺度三维组织建模及可视化[J].北京科技大学学报,2001,23(6): 519-522.
[7] 秦湘阁,刘国权.基于MonteCarlo Potts方法的三维大尺度晶粒组织仿真模型及定量表征[J].北京科技大学学报,2004, 26(1): 49-52.
[8] 秦湘阁,刘国权.颗粒增强复合材料显微组织的计算机仿真[J].佳木斯大学学报:自然科学版,2001, 19(1): 1-4.
[9] 潘琼瑶,贺鹏飞,郑百林,等.颗粒增强复合材料热性能的数值模拟研究[J].太原理工大学学报,2005,36(6): 663-665.
[10] 孙永立,于朝阳,史然峰,等.WC、Zr02、Cr203和A1203陶瓷颗粒/镍合金复合涂层微观组织结构的分形[J].复合材料学报,2005, 22(3): 85-91.
[11] 何飞,赫晓东,李垚.掺杂二氧化硅干凝胶孔结构的分形特性[J].复合材料学报,2007, 24(1): 81-85.
[12] 聂鹏,王新鑫,高霁,等.纳米复合材料分散相分散均匀性的分形表征[J].北京航空航天大学学报,2009,35(7):852-855.
[13] Woignier T,Primera J,Hafidi Alaoui A, et al. Mechanicalbehaviour of nano composite aerogels [J], Journal of Sol - GelScience and Technology, 2011,58(2) : 385-393.
[14] Sarkisov P D, Butusov O B, Meshalkin V P,et al. Computer-aided method of analysis of nanocomposite structure on thebasis of calculations of isolines of fractal dimensionality [J].Theoretical Foundations of Chemical Engineering, 2010,44(6): 838-843.
[15] Tan L,Wang G, Dong W J, et al. Template - assistedsynthesis of polymer - Li composites with fractal patterns [J].Australian Journal of Chemistry, 2011,64(2) : 190-196.
[16] Amir S,Mohamed N S,Hashim ASA. Simulation model ofthe fractal patterns in ionic conducting polymer films [J].Central European Journal of Physics, 2010,8(1) : 150-156.
[17] 胡卫峰,宣益民,李强.纳米流体聚集结构的模拟及其分维数分析[J].南京理工大学学报,2002,26(3): 229-234.
[18] 何春霞,陆德荣,肖声明.纳米颗粒填充聚四氟乙烯基复合材料的分散性表征[J].上海交通大学学报,2011,45(9): U11-1415.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%