根据金属海水腐蚀的特征,用人工神经网络技术分析碳钢、低合金钢海水腐蚀数据,建立了碳钢、低合金钢的腐蚀速率与合金成分及海水间的神经网络模型,可用于预测新钢种在其它海域中的腐蚀速率,并用所建模型分析了合金元素对腐蚀速率的影响。
The corrosion data of carbon steel and low-alloy steels in seawater have been analyzed by means of artificial neural network. The non-linear relation models among corrosion rate and alloy compositions of carbon steel and low-alloy steels as well as main characteristics of seawater were established. As a result, the corrosion rate of unknown metal under different seawater conditions could be predicted by trained neural networks. Meanwhile, the effects of alloy compositions on corrosion rate were discussed using these models.
参考文献
[1] | 张立明,人工神经网络的模型及应用,上海:复旦大学出版社,1993.47 |
[2] | 中国科技大学编.神经网络及其应用,中国科技大学出版社,1992.61 |
[3] | Smets H M G, Bogaerts W F L. Corrosion, 1992(8): 618 |
[4] | Silverman D C. 12th Inter. Corr. Cong. 1992(5): 3420 |
[5] | Rosen E M, Silverman D C. Corrosion, 1992(9): 734 |
[6] | Haim M B, Macdonald D D. Corrosion Science, 1994, 36(2): 385 |
[7] | 杨行峻等.人工神经网络,北京:高等教育出版社,1992.54 |
[8] | 国家自然科学基金重大项目“材料自然环境腐蚀” “八五”数据汇编第二册海水腐蚀数据,1996 |
[9] | 方开泰.实用多元统计分析,上海华东师范大学出版社,1986.153 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%