欢迎登录材料期刊网

材料期刊网

高级检索

纯钨应用于聚变堆中面向等离子体材料具有难加工、高的韧脆转变温度、低的再结晶温度等缺点,而钨基材料是一类具有广阔应用前景的面向等离子体材料,受到国内外的广泛研究.综述了采用氧化物颗粒弥散强化、碳化物颗粒弥散增强、合金化增强钨基材料和钨基复合材料等强化手段制备新型钨基面向等离子体材料的近年研究进展.采用相应的增强方法可使得钨基材料某些方面的性能得到提高,如显著提高抗弯强度、硬度和断裂韧性,具有较好的抗腐蚀性、延展性和抗冲击力等优点,但是在承受大的工作热负荷时,钨基材料仍会失效,尚需要继续进行相关材料的工艺、性能研究.

参考文献

[1] 郭双全,葛昌纯,周张健,刘维良.聚变堆装置中面向等离子体材料钨涂层的研究进展[J].材料导报,2010(03):93-97.
[2] Mathaudhu, SN;Derosset, AJ;Hartwig, KT;Kecskes, LJ .Microstructures and recrystallization behavior of severely hot-deformed tungsten[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2009(1/2):28-31.
[3] Wei Q;Kecskes L J .Effect of low-temperature rolling on the tensile behavior of commercially pure tungsten[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2008,491:62.
[4] Saito N.;Nakamura M.;Asahina T.;Okamoto K.;Igarashi T.;Mabuchi M. .Effects of the La2O3 particles addition on grain boundary character distribution of pure W[J].Journal of Materials Science Letters,1998(17):1495-1497.
[5] Mabuehi M;Okamoto K;Saito N et al.Deformation behavior and strengthening mechanisms at intermediate temperatures in W-La2O3[J].Materials Science and Engineering,1997,237(02):241.
[6] Mabuehi M;Okamoto K;Saito N et al.Tensile properties at elevated temperature of W-1%La2O3[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1996,214(1-2):174.
[7] Smid I;Akiba M;Vieider G et al.Development of tungsten armor and bonding to copper for plasma-interactive components[J].Journal of Nuclear Materials,1998,258-263:160.
[8] 种法力,陈勇,吴玉程,陈俊凌.La2O3弥散增强钨合金面对等离子体材料及其高热负荷性能[J].材料科学与工程学报,2009(03):415-417,440.
[9] 陈勇,吴玉程,于福文,陈俊凌.La2O3弥散强化钨合金的组织性能研究[J].稀有金属材料与工程,2007(05):822-824.
[10] Park S;Kim D K;Lee S et al.Dynamic deformation behavior of an oxide-dispersed tungsten heavy alloy fabricated by mechanical alloying[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2001,32:2010.
[11] Ho J. Ryu;Soon H. Hong .Fabrication and properties of mechanically alloyed oxide-dispersed tungsten heavy alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):179-184.
[12] Veleva L;Oksiuta Z;Vogt U et al.Sintering and characterization of W-Y and W-Y2O3 materials[J].Fusion Engineering and Design,2009,84:1920.
[13] Kim Y;Lee K H;Kim E P et al.Fabrication of high temperature oxides dispersion strengthened tungsten composites by spark plasma sintering process[J].International Journal of Refractory Metals and Hard Materials,2009,27:842.
[14] Kim Y;Hong M H;Lee S H et al.The effect of yttrium oxide on the sintering behavior and hardness of tungsten[J].Metals Mater Int,2006,12:245.
[15] Park S;Kim D K;Lee S et al.Dynamic deformation behavior of an oxide-dispersed tungsten heavy alloy fabricated by mechanical alloying[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2001,32:2011.
[16] Ishijima Y;Kurishita H;Arakawa H et al.Microstructure and bend ductility of W-0.3mass%TiC alloys fabricated by advanced powder-metallurgical processing[J].Materials Transactions,2005,45:568.
[17] Kurishita H;Matsuo S;Arakaw H et al.High temperature tensile properties and their application to toughness enhancement in ultra-fine grained W-(0~1.5)wt% TiC[J].Journal of Nuclear Materials,2009,386-388:579.
[18] Kurishita H;Amano Y;Kobayashi S;Nakai K;Arakawa H;Hiraoka Y;Takida T;Takebe K;Matsui H .Development of ultra-fine grained W-TiC and their mechanical properties for fusion applications[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,2007(b):1453-1457.
[19] Kurishita H;Matsuo S;Arakawa H et al.Superplastic deformation in W-0.5wt% TiC with approximately 0.1μmgrain size[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2008,477:162.
[20] 种法力,于福文,陈俊凌.W-TiC合金面对等离子体材料及其电子束热负荷实验研究[J].稀有金属材料与工程,2010(04):750-752.
[21] 宋桂明,王玉金,周玉.ZrC颗粒含量对钨基复合材料力学性能的影响[J].有色金属,2001(01):47-51.
[22] Avettand-Fenoel M N;Taillard R;Dhers J et al.Effect of ball milling parameters on the microstructure of W-Y powders and sintered sample[J].International Journal of Refractory Metals and Hard Materials,2003,21:205.
[23] Kurishita H;Kitsunai Y;Shibayama T et al.Development of Mo alloys with improved resistance to embitterment by recrystallization and irradiation[J].Journal of Nuclear Materials,1996,233-237:557.
[24] Qiang SHEN,Lianmeng ZHANG,Hua Tan,Fuqian Jing.Wave impedance of W-Mo system composite[J].北京科技大学学报(英文版),2003(05):35-38.
[25] Pintsuk G;Uytdenhouwen I .Thermo-mechanical and thermal shock characterization of potassium doped tungsten[J].International Journal of Refractory Metals and Hard Materials,2010,28:661.
[26] Golubeva AV;Mayer M;Roth J;Kurnaev VA;Ogorodnikova OV .Deuterium retention in rhenium-doped tungsten[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,2007(0):893-897.
[27] Monge M A;Auger M A;Leguey T et al.Characterization of novel W alloys produced by HIP[J].Journal of Nuclear Materials,2009,386-388:613.
[28] Seok H K;Jung K H;Kim Y C et al.Evaluation of W-SiC thick coating as a plasma facing material[J].Journal of Nuclear Materials,2009,386-388:834.
[29] Koch F;K(o)ppl S;Bolt H .Self passivating W-based alloys as plasma-facing material[J].Journal of Nuclear Materials,2009,386-388:572.
[30] Koch F;Bolt H .Self passivating W-based alloys as plasma facing material for nuclear fusion[J].Physica Scripta,2007,T128:100.
[31] Du J;H(o)schen T;Rasinski M et al.Interfacial fracture behavior of tungsten wire/tungsten matrix composites with copper-coated interfaces[J].Journal of Materials Science and Engineering A,2010,527:1623.
[32] Du J;H(o)schen T;Rasinski M et al.Feasibility study of a tungsten wire-reinforced tungsten matrix composite with ZrOx interfacial coatings[J].Computer Science and Technology,2010,70:1482.
[33] 刘天贵,陈传盛*,陈小华.碳纳米管增强金属基复合材料[J].化学通报(网络版),2006(1):1-8.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%