利用紧束缚模型的方法研究了石墨烯中Dirac费米子的势垒相关输运特性,分析了石墨烯中Dirac费米子的势垒透射率与其入射角度、入射能量、势垒高度和势垒厚度等对应关系.通过理论分析和数值计算表明,石墨烯中Dirac费米子的隧穿系数随矩形势垒的高度和厚度的变化都呈现出明显的振荡效应,隧穿系数与入射角度依赖关系证实了Klein效应.在一定参数下,Dirac费米子的势垒透射率随Dirac费米子入射能量的变化经历从“0”~“1”的突变,显示良好的“电导开关效应”,该效应在微电子器件中将有很好的应用前景.
参考文献
[1] | Novoselov K S;Geim A K;Morozov S V et al.Electric field effect in atomically thin carbon films[J].Science,2004,306:666-669. |
[2] | Novoselov K S;Geim A K;Morozov S V et al.Two-dimensional gas of massless Dirac fermions in graphene[J].Nature,2005,438:197-200. |
[3] | Jin Zhang;Hongling Zou;Quan Qing;Yanlian Yang;Qingwen Li;Zhongfan Liu;Xinyong Guo;Zuliang Du .Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes[J].The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical,2003(16):3712-3718. |
[4] | Yi W;Lu L;Zhang D L et al.Linear specific heat of carbon nanotubes[J].Physical Review B:Condensed Matter,2008,59(14):R9015-R9018. |
[5] | Zhang XF.;Cao AY.;Wei BQ.;Li YH.;Wei JQ.;Xu CL.;Wu DH. .Rapid growth of well-aligned carbon nanotube arrays[J].Chemical Physics Letters,2002(3-4):285-290. |
[6] | 胡海鑫,张振华,刘新海,邱明,丁开和.石墨烯纳米带电子结构的紧束缚法研究[J].物理学报,2009(10):7156-7161. |
[7] | Geim AK;Novoselov KS .The rise of graphene[J].Nature materials,2007(3):183-191. |
[8] | Katsnelson M I;Novoselov K S;Geima K .Chiral tunnelling and the klein paradox in graphene[J].Nature Physical Science,2006,2:620-625. |
[9] | Zhang Y B;Tan Y W;Stormel H L et al.Experimental observation of the quantum hall effect and berry's phase in graphene[J].Nature,2005,438:201-204. |
[10] | Nair RR;Blake P;Grigorenko AN;Novoselov KS;Booth TJ;Stauber T;Peres NM;Geim AK .Fine structure constant defines visual transparency of graphene.[J].Science,2008(5881):1308-1308. |
[11] | Changgu Lee;Xiaoding Wei;Jeffrey W. Kysar;James Hone .Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene[J].Science,2008(5887):385-388. |
[12] | Huard B;Sulpizio JA;Stander N;Todd K;Yang B;Goldhaber-Gordon D .Transport measurements across a tunable potential barrier in graphene[J].Physical review letters,2007(23):6803-1-6803-4-0. |
[13] | Barbier M;Vasilopoulos P;Peeters F M .Kronig-Penney model on bilayer graphene:spectrum and transmission periodic in the strength of the barriers[J].Physical Review B:Condensed Matter,2010,82:235408. |
[14] | Mondal S;Sen D;Sengupta K et al.Magnetotransport of Dirac fermions on the surface of a topological insulator[J].Physical Review B,2010,82:045120. |
[15] | Wang Ligang;Zhu Shiyao .Electronic band gaps and transport properties in graphene superlattices with one dimensional periodic potentials of square barriers[J].Physical Review B:Condensed Matter,2010,81:205444. |
[16] | Tuning the Conductance of Dirac Fermions on the Surface of a Topological Insulator[J].Physical review letters,2010(4):046403.1. |
[17] | Ya-Fen Hsu;Guang-Yu Guo .Tunneling conductance of graphene ferromagnet-insulator-superconductor junctions[J].Physical review, B. Condensed matter and materials physics,2010(4):045412:1-045412:12. |
[18] | Bai Chunxu;Yang Yanling;Zhang Xiangdong .Effect of electron electron interactions on the Klein paradox in graphene based double-barrier structures[J].Physical Review B:Condensed Matter,2009,80:235423. |
[19] | Yang J;Wang J;Zheng ZM;Xing DY;Chang CR .Quantum oscillations of tunneling magnetoresistance in magnetic tunnel junctions[J].Physical review, B. Condensed matter and materials physics,2005(21):4434-1-4434-5-0. |
[20] | Young, AF;Kim, P .Quantum interference and Klein tunnelling in graphene heterojunctions[J].Nature physics,2009(3):222-226. |
[21] | N. Stander;B. Huard;D. Goldhaber-Gordon .Evidence For Klein Tunneling In Graphene P-n Junctions[J].Physical review letters,2009(2):239-242. |
[22] | Katsnelsonmi;Novoselovks;Geim A K .Chiral tunnelling and the Klein paradox in graphene[J].Nature Physical Science,2006,2:620-625. |
[23] | Yokoyama T;Linder J;Sudbo A .Heat transport by Dirac fermions in normal/superconducting graphene junctions[J].Physical review, B. Condensed matter and materials physics,2008(13):132503-1-132503-4-0. |
[24] | 张天友,张东.还原氧化石墨烯横向尺寸分布影响因素初探[J].功能材料,2009(10):1695-1698. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%