欢迎登录材料期刊网

材料期刊网

高级检索

通过不同厚度超高韧性水泥基复合材料(UHTCC)试件的四点弯曲试验,研究了厚度对其弯曲性能的影响,并通过理论量纲分析做了进一步解释。结合ASTM C 1609标准,提出了以单位塑性铰区体积的能量消耗Tv为参数的韧性评价方法。试验结果表明:不同厚度试件的名义弯曲应力-弯曲应变曲线与裂缝宽度变化曲线几乎重合;挠度随厚度增大呈反比例下降;在极限破坏时,中和轴高度与试件厚度比约为0.88。对于ASTM C 1609标准,韧性指数随厚度的增大而增大,而新提出的韧性指数Tv与试件厚度无关。对于拉应变硬化的超高韧性水泥基复合材料,弯曲强度、韧性性能和裂缝宽度均不存在尺寸效应。建议选用与普通FRC材料韧性及弯曲性能测定相同的试件尺寸(100 mm×100 mm×400 mm)作为标准试件形式。

Four-point bending tests were performed on ultrahigh toughness cementitious composite(UHTCC)specimens for the purpose of understanding the influence of specimens' thickness on its flexural behavior.The further explanation on this influence was made through theoretical dimension analysis.In the evaluation of toughness property,a new parameter,defined as energy dissipation per unit volume of plastic hinge region was proposed.The experimental results show that,the nominal flexural strength-flexural strain curves and crack width evolution curves of different thickness specimens are almost identical.Mid-span deflection decreases in an inversely proportional manner with the increase in specimen's thickness.The ratio of neutral axis depth to specimens' thickness at ultimate failure nearly keeps a constant value(about 0.88).Toughness index calculated based on ASTM C 1609 standard rises as the specimens' thickness increases,whereas new proposed toughness index Tv is independent of specimens' thickness.Therefore,for ultrahigh toughness cementitious composite exhibiting tensile strain-hardening characteristic,flexural strength,toughness capacity and crack width have no size effect.With these findings,standard specimen dimension,i.e.,100mm×100mm×400mm specified for traditional FRC,is suggested for the flexural test of ultrahigh toughness cementitious composite.

参考文献

[1] 叶颖薇,冼定国,冼杏娟.竹纤维和椰纤维增强水泥复合材料[J].复合材料学报,1998,15(3):92-98.
[2] Andrzej M B. Fiher reinforced cement- laased (FRC) composites after over 40 years of development in building and civil engineering [J]. Compos Struct, 2008, 86(1- 3), 3-9.
[3] 李为民,许金余,沈刘军,等.玄武岩纤维混凝土的动态力学性能[J].复合材料学报,2008,25(2):135-142.
[4] Li V C, Leung C K Y. Theory of steady state and multiple cracking of random discontinuous fiber reinforced brittle matrix composites [J]. ASCE Journal of Engineering Mechanics, 1992, 118(11): 2246-2264.
[5] 徐世煨,李贺东.超高韧性水泥基复合材料研究进展及其工程应用[J].土木工程学报,2008,41(6):45-60.
[6] Li V C, Wang S, Wu C. Tensile strain- hardening behavior of PVA-ECC [J]. ACI Materials Journal, 2001, 98(6): 483-492.
[7] Li V C, Hashida T. Engineering ductile fracture in brittle matrix composites [J]. Journal of Materials Science Letters, 1993, 12(12) :898-901.
[8] Li H D, Xu S L, Leung C K Y. Tensile and flexural properties of ultra high toughness cemontious composite [J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2009, 24,(4) : 677-683.
[9] 徐世烺.蔡新华.超高韧性水泥基复合材料碳化与渗透性能试验研究[J].复合材料学报,2010,27(3):177-183.
[10] Kanakubo T. Tensile characteristics evaluation method for ductile fiber-reinforced cementitious composites [J]. Journal of Advanced Concrete Technology, 2006, 4(1): 3-17.
[11] Qian S, Li V C. Simplified inverse method for determining the tensile strain capacity of SHCCS [J], Journal of Advanced Concrete Technology, 2007, 5(2): 235-246.
[12] 李贺东.超高韧性水泥基复合材料试验研究[D].大连:大连理工大学,2008.
[13] Park R, Pauley T. Reinforced concrete structure [M]. New York: John Wiley & Sons, 1975.
[14] American Society for Testing and Materials. ASTM C 1018-97 Standard test method for flexural toughness and first- crack strength of fiber- reinforced concrete (using beam with third-point loading ) [S]. Philadelphia, USA: ASTM International, 1997.
[15] Japan Concrete Institute. JCI SF-4 method of tests for flexural strength and flexural toughness of fiber- reinforced concrete [S], Tokyo, Japan: Japan Concrete Institute Standards for Test Methods of Fiber Reinforced Concrete, 1984.
[16] Naaman A E, Reinhardt H W. High performance fiber reinforced cement composites 2 (HPFRCC 2) [M]. Lodon: E & FN Spon, 1996: 210-212.
[17] Johnston C D, Skarendahl A, Comparative flexural performance evaluation of steel fiber - reinforced concrete according to ASTM C 1018 [J]. Materials and Structures, 1992, 25(4): 191-200.
[18] Shah S P, Brandt A M, Quyang C, et al. Toughness characterization and toughening mechanisms [C]// Naaman A E, Reinhardt H W. Proceedings of the Second International RILEM Workshop. London: E & FN Spon, 1995: 193-228.
[19] American Society for Testing and ASTM C 1609 Standard test method for flexural performance of fiber-reinforced concrete (using beam with third-point loading) [S]. Philadelphia, USA: ASTM International, 2005.
[20] Marijan S, Dubravka B. Toughness testing of ultra high performance fiber reinforced concrete [J]. Materials and Struetures, 2009, 42(8) :1025-1038.
[21] Soranakom C, Mobasher B. Closed-form solutions for flexural response of fiber reinforced concrete beams [J]. ASCE Journal of Engineering Mechanics, 2007, 133(8): 933-941.
[22] Ward R, Li V C. Dependence of flexural behavior of fiber reinforced motor on material fracture resistance and beam size [J]. ACI Material Journal, 1990, 87(6): 627-637.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%