欢迎登录材料期刊网

材料期刊网

高级检索

甲烷无氧芳构化(MDA)和甲烷水蒸气重整(MSR)的耦合反应可以大幅度提高甲烷无氧芳构化反应的稳定性.单独的甲烷无氧芳构化反应失活较快,甲烷转化率从0.5 h的14.5%很快下降至15 h的3.5%.而采用联合MSR/MDA反应体系,甲烷的转化率从12.5 h的11.5%非常缓慢地下降至60 h后的6.5%.MSR反应原位生成的CO和H_2能降低反应中生成的CHr物种数量,减少催化剂上积炭的牛成,进而延长反应时间.MSR反应过程中高比例H_2的生成更能有效地减少与B酸相关的积炭的生成,从而更好地抑制反应的失活.

The durability of methane dehydroaromatization (MDA) has been improved by its combination with methane steam reforming (MSR). The methane conversion in the combined MSR/MDA system decreases very slowly from 11.5% at 12.5 h to 6.5% at 60 h, whereas it decreases rapidly from 14.5% at 0.5 h to 3.5% at 15 h for the MDA reaction alone. CO and H_2 produced in-situ through the MSR reaction may reduce the amount of CH, species during the reaction, which in turn reduces the formation of coke deposited on the catalyst, prolonging the durability of the MDA reaction. High content of H_2 from the MSR process plays a major role in suppressing coke accumulation on the catalyst, especially the coke associated with the Bronsted acidic sites that are mainly responsible for the deactivation.

参考文献

[1] XuYD;Lin L W .[J].Applied Catalysis A:General,1999,188:53.
[2] Xu YD.;Bao XH.;Lin LW. .Direct conversion of methane under nonoxidative conditions[J].Journal of Catalysis,2003(1/2):386-395.
[3] Choudhary TV.;Aksoylu E.;Goodman DW. .Nonoxidative activation of methane [Review][J].Catalysis Reviews. Science and Engineering,2003(1):151-203.
[4] Lunsford J H .[J].Catalysis Today,2000,63:165.
[5] Ma D;Shu Y Y;Cheng M J;Xu Y D Bao X H .[J].Journal of Catalysis,2000,194:105.
[6] 刘红梅,申文杰,刘秀梅,包信和,徐奕德.分子筛的酸处理对Mo/HZSM-5催化甲烷无氧芳构化反应性能的影响[J].催化学报,2004(09):688-692.
[7] Su L L;Liu L;Zhuang J Q;Wang H X Li Y G Shen W J Xu Y D Bao X H .[J].Catalysis Letters,2003,91:155.
[8] Ding W P;Meitzner G D;Iglesia E .[J].Journal of Catalysis,2002,206:14.
[9] Lu Y;Ma D;Xu Z S;Tian Z J,Bao X H,Lin L W.[J].Chemical Communications,2001:2048.
[10] Ma D;Lu Y;Su L L;Xu Z S Tian Z J Xu Y D Lin L W Bao X H .[J].Journal of Physical Chemistry B,2002,106:8524.
[11] Wang H X;Su L L;Zhuang J Q;Tan D L Xu Y D Bao X H .[J].Journal of Physical Chemistry B,2003,107:12964.
[12] 宋一兵,孙长勇,吴燕青,申文杰,林励吾.Mo/HZSM-5催化剂上甲烷无氧芳构化反应--HZSM-5分子筛脱铝的影响[J].催化学报,2007(04):371-376.
[13] 李永刚,黄秀敏,柳林,刘秀梅,申文杰,包信和,徐奕德.NH4F改性Mo/HZSM-5催化剂上的甲烷无氧芳构化反应:预处理温度影响的进一步研究[J].催化学报,2006(02):166-170.
[14] Yuan SD.;Hao ZX.;Feng ZC.;Xin Q.;Ying PL.;Li C.;Li J. .The effect of oxygen on the aromatization of methane over the Mo/HZSM-5 catalyst[J].Catalysis Letters,1999(1/2):73-77.
[15] Tan P L;Leung Y L;Lai S Y;Au C T .[J].Ortal Lett,2002,78:251.
[16] Liu S T;Dong Q;Ohnishi R;Ichikawa M.[J].Chemical Communications,1998:1217.
[17] Ohnishi R;Liu S T;Dong Q;Wang L S Ichikawa M .[J].Journal of Catalysis,1999,182:92.
[18] Liu Z;Michael A;Iglesia E .[J].Catalysis Letters,2002,81:271.
[19] Ma H T;Ohnishi R;Ichikawa M .[J].Catalysis Letters,2003,89:143.
[20] Lacheen H S;Iglesia E .[J].Journal of Catalysis,2005,230:173.
[21] Rodrigues, ACC;Monteiro, JLF .CO2 addition on the non-oxidative dehydro-aromatization of methane over MoMCM-22[J].Catalysis Letters,2007(3/4):166-170.
[22] Liu S L;Ohnishi R;Ichikawa M .[J].Journal of Catalysis,2003,220:57.
[23] Li Y G;Wu T H;Shen W J;Bao X H Xu Y D .[J].Catalysis Letters,2005,105:77.
[24] Yao S D;Gu L J;Sun C Y;Li J Shen W J .[J].Industrial and Engineering Chemistry Research,2009,48:713.
[25] Liu H M;Li Y;Shen W J;Bao X H Xu Y D .[J].Catalysis Today,2004,93-95:65.
[26] Guisnet M;Magnoux P .[J].Applied Catalysis A:General,2001,212:83.
[27] Zaikovskii VI;Vostnerikov AV;Anufrienko VF;Korobitsyna LL;Kodenev EG;Echevskii GV;Vasenin NT;Zhuravkov SP;Matus EV;Ismagilov ZR .Properties and deactivation of the active sites of an MoZSM-5 catalyst for methane dehydroaromatization: Electron microscopic and EPR studies[J].Kinetics and catalysis,2006(3):389-394.
[28] Lawton S L;Fung A S;Kennedy G J;Alemany L B,Chang C D,Hatzikos G H,Lissy D N,Rubin M K,Timken H K C,Steuernagel S,Woessner DE .[J].Journal of Physical Chemistry,1996,100:3788.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%