欢迎登录材料期刊网

材料期刊网

高级检索

用快淬工艺制备了Mg2Ni型合金,其名义成分为Mg2Ni1-xCox(x=0,0.1,0.2,0.3,04).以XRD、SEM、TEM分析了铸态及快淬合金的结构.用程控模拟电池测试仪测试了合金的电化学贮氢动力学.用电位跃迁法计算了氢在合金中的扩散系数.用电化学工作站测试了合金的电化学交流阻抗谱(EIS)和Tafel极化曲线.结果表明,快淬态无Co合金具有典型的纳米晶结构,而Co含量为0.4的快淬态合金具有纳米晶/非晶结构,表明Co替代Ni可以提高Mg2Ni型合金的非晶形成能力,且快淬态合金的非晶化程度随Co替代量的增加而增加.Co替代Ni显著地提高了合金电化学贮氢动力学.当Co含量从0增加到04时,淬速为25 m/s的快淬态合金的高倍率放电能力(HRD)从65.3%增加到75.3%,氢扩撒系数(D)从2.22 cm2/s增加到3.34 cm2/s,极限电流密度(IL)从247.8 mA/g增加到712.4 mA/g.

The Mg2Ni-type Mg2Ni1-xCox (x=0,0.1,0.2,0.3,0.4) alloys were prepared by melt-spinning technique.The structures of the as-cast and spun alloys were characterized by XRD,SEM and TEM.The electrochemical hydrogen storage kinetics of the as-spun alloy ribbons was tested by an automatic galvanostatic system.The hydrogen diffusion coefficients in the alloys were calculated by virtue of potential-step method.The electrochemical impedance spectrums (EIS) and the Tafel polarization curves were plotted by an electrochemical workstation.The results show that the as-spun Co-free alloy exhibits a typical nanocrystalline structure,while the as-spun (x=0.4) alloy displays a nanocrystalline and amorphous structure,confirming that the substitution of Co for Ni facilitates the glass formation in the Mg2Ni-type alloy.The amorphization degree of the as-spun alloys substituted by Co visibly increases with the increase in the amount of Co replacement.The Co replacement for Ni notably improves the electrochemical hydrogen storage kinetics of the alloys.With a growth in the amount of Co replacement from 0 to 0.4,the high rate discharge ability of the as-spun (25 m/s) alloy increases from 65.3% to 75.3%,the hydrogen diffusion coefficient (D) from 2.22 to 3.34 cm2/s and the limiting current density IL from 247.8 to 712.4 mA/g,respectively.

参考文献

[1] Jain I P;Lal C;Jain A .[J].International Journal of Hydrogen Energy,2010,35:5133.
[2] Simchi H;Kaflou A;Simchi A .[J].International Journal of Hydrogen Energy,2009,34:7724.
[3] Huang L J;Liang G Y;Sun Z B et al.[J].Journal of Alloys and Compounds,2007,432:172.
[4] Cui N;Luan B;Zhao H J et al.[J].Journal of Alloys and Compounds,1996,233:236.
[5] Liang G .[J].Journal of Alloys and Compounds,2004,370:123.
[6] Song M Y;Kwon S N;Bae J S et al.[J].International Journal of Hydrogen Energy,2008,33:1711.
[7] Savyak M;Himyj S;Bauer H D et al.[J].Journal of Alloys and Compounds,2004,364:229.
[8] Huang L J;Liang G Y;Sun Z B et al.[J].Journal of Power Sources,2006,160:684.
[9] Spassov T.;Koster U. .Thermal stability and hydriding properties of nanocrystalline melt-spun Mg63Ni30Y7 alloy[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,1998(2):279-286.
[10] Williamson G K;Hall W H .[J].Acta Metallurgica,1953,1:22.
[11] Yamaura S I;Kim H Y;Kimura H et al.[J].Journal of Alloys and Compounds,2002,339:230.
[12] Chen H S .[J].Acta Metallurgica,1974,22:1505.
[13] Gasiorowski A;Iwasieczko W;Skoryna D et al.[J].Journal of Alloys and Compounds,2004,364:283.
[14] Zhong G;Popov B N;White R E .[J].Journal of the Electrochemical Society,1995,142:2695.
[15] Kuriyama N;Sakai T;Miyamura H et al.[J].Journal of Alloys and Compounds,1993,202:183.
[16] Zhao X Y;Ding Y;Ma L Q et al.[J].International Journal of Hydrogen Energy,2008,33:6727.
[17] Ratnakumar BV.;Bowman RC.;Hightower A.;Fultz B.;Witham C. .ELECTROCHEMICAL STUDIES ON LANI5-XSNX METAL HYDRIDE ALLOYS[J].Journal of the Electrochemical Society,1996(8):2578-2584.
[18] Liu Y F;Pan H G;Gao M X et al.[J].International Journal of Hydrogen Energy,2004,29:297.
[19] Woo J H;LEE K S .[J].Journal of the Electrochemical Society,1999,146:819.
[20] Song M Y;Kwona S N;Baeb J S et al.[J].International Journal of Hydrogen Energy,2008,33:1711.
[21] Wu Y;Han W;Zhou S X et al.[J].Journal of Alloys and Compounds,2008,466:176.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%