钢筋混凝土在盐渍土和盐湖环境下的腐蚀包括硫酸根离子和镁离子对混凝土的侵蚀以及氯离子对混凝土中钢筋的锈蚀.简要介绍了盐渍土环境中钢筋混凝土结构腐蚀失效原理,并综述了国内外近年来对盐渍土钢筋混凝土腐蚀机理研究的相关情况.
参考文献
[1] | JTT 013-1986.公路路基设计规范[S].北京:人民交通出版社,1986. |
[2] | 刘连新.察尔汗盐湖及超盐渍土地区混凝土侵蚀及预防初探[J].建筑材料学报,2001(04):395-400. |
[3] | 冷发光,马孝轩,丁威,王晶,周永祥,纪宪坤.滨海盐渍土环境中暴露17年的钢筋混凝土桩耐久性分析[J].建筑结构,2011(11):148-151,144. |
[4] | 赵天虎.盐渍土对钢筋混凝土电杆的浸蚀[J].油气田地面工程,1997(02):38. |
[5] | 刘晓敏.混凝土中钢筋腐蚀破坏的研究概况[J].材料保护,1996(06):16. |
[6] | 吴庆,汪俊华,吴公勋.混凝土硫酸盐侵蚀双因素影响及干湿循环与连续浸泡差异分析[J].四川建筑科学研究,2010(06):192-194. |
[7] | 黄可信;吴兴祖.钢筋混凝土结构中钢筋腐蚀与防护[M].北京:中国建筑工业出版社,1983 |
[8] | Qian S Y;Zhang J Y;Qu D Y .Theoretical and experimental study of microcell and macrocell corrosion in patch repairs of concrete structures[J].Cement and concrete composites,2006,28(18):685. |
[9] | Li L Q;Dong S G;Wang W et al.Study on interaction between macrocell and microcell in the early corrosion process of reinforcing steel in concrete[J].Sci China Techn Sci,2010,53(15):1285. |
[10] | Angst U;Elsener B .Chloride induced reinforcement corrosion:Rate imiting step of early pitting orrosion[J].Electrochimica Acta,2011,56(17):5877. |
[11] | Abd El Haleem S M;Abd El Wanees S;Abd El Aal E E et al.Environmental factors affecting the corrosion behavior of reinforcing steel Ⅱ.Role of some anions in the initiation and inhibition of pitting corrosion of steel in Ca(OH)2 solutions[J].Corrosion Science,2010,52(02):292. |
[12] | J. S. Ryou;K. Y. Ann .Variation in the chloride threshold level for steel corrosion in concrete arising from different chloride sources[J].Magazine of concrete research,2008(3):177-187. |
[13] | R.E. Melchers;C.Q. Li .Reinforcement corrosion initiation and activation times in concrete structures exposed to severe marine environments[J].Cement and Concrete Research,2009(11):1068-1076. |
[14] | Hans Bohni.Corrosion in reinforced concrete structures[M].Boca Raton:CRC Press,2005:97. |
[15] | 余红发,孙伟,王甲春,屈武,鄢良慧,魏占元.盐湖地区侵蚀性离子在混凝土中的扩散及其相互作用[J].东南大学学报(自然科学版),2003(02):156-159. |
[16] | 金祖权,孙伟,赵铁军,李秋义.在不同溶液中混凝土对氯离子的固化程度[J].硅酸盐学报,2009(07):1068-1072,1078. |
[17] | Tumidajski P J;Chan G W .Effect of sulfate and carbon dioxide on chloride diffusivity[J].Cement and Concrete Research,1996,26(04):551. |
[18] | Al-Amoudi O S B;Mohammed M .The effect of chloride and sulfate ions on reinforcement corrosion[J].Cement and Concrete Research,1993,23(01):139. |
[19] | Obserholster R E.Pore structure,permeability and diffusivity of hardened cement paste and concrete in relation to durability:Status and prospects[A].Rio de Janeiro,Brazil,1986 |
[20] | Stratful R F .Effect on reinforced concrete in sodium chloride and sodium sulfate environments[J].Mater Protect,1964,3(12):74. |
[21] | Omar Saeed Baghabra Al-Amoudi;Mohammed Maslehuddin;Yaser A. B. Abdul-Al .Role of chloride ions on expansion and strength reduction in plain and blended cements in sulfate environments[J].Construction and Building Materials,1995(1):25-33. |
[22] | H.A.F. Dehwah;M. Maslehuddin;S.A. Austin .Long-term effect of sulfate ions and associated cation type on chloride-induced reinforcement corrosion in Portland cement concretes[J].Cement & concrete composites,2002(1):17-25. |
[23] | 张巨松,韩自博,邓嫔,张微.Na+和SO42-对混凝土Cl-扩散系数的影响[J].混凝土,2010(02):10-13. |
[24] | 刘荣桂,李欢,陈妤,李静,崔钊玮.海工混凝土受硫酸盐影响的氯离子扩散规律研究[J].混凝土,2012(02):18-20,24. |
[25] | Feldman R F;Beaudoio J J;Philipose K E .Effect of cement blends on chloride and sulfate ion diffusion in concrete Ⅱ[J].Cemento,1991,8(08):3. |
[26] | 亢景富.混凝土硫酸盐侵蚀研究中的几个基本问题[J].混凝土,1995(03):9. |
[27] | 高润东,赵顺波,李庆斌,陈记豪.干湿循环作用下混凝土硫酸盐侵蚀劣化机理试验研究[J].土木工程学报,2010(02):48-54. |
[28] | 金祖权,赵铁军,孙伟.硫酸盐对混凝土腐蚀研究[J].工业建筑,2008(03):90-93. |
[29] | Jin Zuquan;Sun Wei;Zhang Yunsheng .Interaction between sulfate and chloride solution attack of concretes with and without fly ash[J].Cement and Concrete Research,2007(8):1223-1232. |
[30] | 金祖权,孙伟,张云升,赖建中.氯盐对混凝土硫酸盐损伤的影响研究[J].武汉理工大学学报,2006(03):43-46. |
[31] | 金祖权,孙伟,张云升,蒋金洋.混凝土在硫酸盐、氯盐溶液中的损伤过程[J].硅酸盐学报,2006(05):630-635. |
[32] | 金祖权,孙伟,张云升,赖建中.氯盐、硫酸盐作用下高性能混凝土损伤研究[J].工业建筑,2005(01):5-7. |
[33] | Kind V V .Effect of chloride in mix ingredients on sulphate resistance of concrete[J].MAGAZINE OF CONCRETE RESEARCH,1990,42(152):113. |
[34] | Sotiriadis K;Nikolopoulou E;Tsivilis S .Sulfate resistance of limestone cement concrete exposed combined chloride and sulfate environment at low temperature[J].Cement and concrete composites,2012,34(08):903. |
[35] | 梁咏宁,黄君一,林旭健,季韬.氯盐对受硫酸盐腐蚀混凝土性能的影响[J].福州大学学报(自然科学版),2011(06):947-951. |
[36] | Omar Saeed Baghabra Al-Amoudi;Mohammed Maslehuddin;Yaser A. B. Abdul-Al .Role of chloride ions on expansion and strength reduction in plain and blended cements in sulfate environments[J].Construction and Building Materials,1995(1):25-33. |
[37] | Subramaniam K V;Bi M .Investigation of steel corrosion in cracked concrete:Evaluation of macrocell and microcell rates using Tafel polarization response[J].Corrosion Science,2010,52(18):2725. |
[38] | Hui Yu;Kuang-Tsan K. Chiang;Lietai Yang .Threshold chloride level and characteristics of reinforcement corrosion initiation in simulated concrete pore solutions[J].Construction and Building MATERIALS,2012(1):723-729. |
[39] | Poursaee A .Determining the appropriate scan rate to perform cyclic polarization test on steel bars in concrete[J].Electrochimica Acta,2010,55(03):1200. |
[40] | Wen Chen;Rong-Gui Du;Chen-Qing Ye;Yan-Feng Zhu;Chang-Jian Lin .Study on the corrosion behavior of reinforcing steel in simulated concrete pore solutions using in situ Raman spectroscopy assisted by electrochemical techniques[J].Electrochimica Acta,2010(20):5677-5682. |
[41] | 胡融刚,杜荣归,林昌健.氯离子侵蚀下钢筋在混凝土中腐蚀行为的EIS研究[J].电化学,2003(02):189-195. |
[42] | 贾丙丽,曹发和,陈安娜,张鉴清.干湿循环下混凝土中钢筋腐蚀的电化学检测[J].电化学,2010(04):355-361. |
[43] | 贾丙丽,曹发和,刘文娟,张鉴清.钢筋混凝土腐蚀的电化学检测研究现状[J].材料科学与工程学报,2010(05):791-796,800. |
[44] | L. Abosrra;A.F. Ashour;ML Youseffi .Corrosion of steel reinforcement in concrete of different compressive strengths[J].Construction and Building Materials,2011(10):3915-3925. |
[45] | 施锦杰,孙伟.等效电路拟合钢筋锈蚀行为的电化学阻抗谱研究[J].腐蚀科学与防护技术,2011(05):387-392. |
[46] | 刘晓敏;史志明 等.硫酸盐和温度对钢筋腐蚀行为的影响[J].中国腐蚀与防护学报,1999,19(01):55. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%