欢迎登录材料期刊网

材料期刊网

高级检索

为研究含稀土元素铈的镁合金中高温流变行为,利用热模拟试验机对Mg-6Zn-0.5Zr-1.5Ce合金在变形温度523~673 K、应变速率0.001~1 s-1范围内进行热压缩实验.基于真应力真应变实验数据构建了单隐层前馈误差反向传播人工神经网络模型,利用该模型对ZK60-1.5Ce合金的流变应力行为进行预测,并分析了变形温度、应变速率与真应变对流变应力的影响.研究表明:Ce添加可显著细化晶粒;该镁合金的流变应力随变形温度降低和应变速率升高而增加;其流变应力行为可用双曲正弦函数进行描述,依据峰值应力拟合求得该合金的表观激活能为161.13 kJ/mol;变形温度和应变速率对流变应力的影响高于真应变.所建立的人工神经网络模型可以很好地描述该镁合金的流变应力,其预测值与实验数值吻合良好.

To investigate the rheological behavior of ZK60 alloy with rare earth addition, a T4 -ttreated Mg -6Zn- 0.5Zr- 1.5Ce magnesium alloy was investigated by compressive test using Gleeble 3800 thermal-simu- lator. The deformation temperature and the strain rate are in the range of 523 -673 K and 0.001 - 1 s-1 ,re- spectively. According to the true strain-true stress curves, a feed-forward back-propagation artificial neural net- work (ANN) was established to study the flow behaviors. We found that the addition of Ce resulted in refine- ment of microstructure. The flow stress increased as the deformation temperature decreased or as the strain rate increased. The flow stress behavior can be described using the hyperbolic sine constitutive equation and the av- erage activation energy of this alloy was calculated as 161.13 kJ/mol. The effects of deformation temperature, strain rate and strain on the flow stress behavior were studied by comparing the experimental and predicted re- suits using the developed ANN model, A good agreement between experimental and predicted result was ob-tained.

参考文献

[1] A.A. Luo;R.K. Mishra;A.K. Sachdev .High-ductility magnesium-zinc-cerium extrusion alloys[J].Scripta materialia,2011(5):410-413.
[2] Kun Yu;Wenxian Li;Jun Zhao .Plastic deformation behaviors of a Mg-Ce-Zn-Zr alloy[J].Scripta materialia,2003(9):1319-1323.
[3] 覃银江,潘清林,何运斌,李文斌,刘晓艳,范曦.ZK60镁合金热压缩变形流变应力行为与预测[J].金属学报,2009(07):887-891.
[4] 王智祥,刘雪峰,谢建新.AZ91镁合金高温变形本构关系[J].金属学报,2008(11):1378-1383.
[5] Raja K. Mishra;Anil K. Gupta;P. Rama Rao, .Influence of cerium on the texture and ductility of magnesium extrusions[J].Scripta materialia,2008(5):562-565.
[6] Li Jin;Guang Li;Jie Dong .Microstructure and Mechanical Properties of Extruded Mg-Zn-Ce-Zr Alloy Rods[J].Materials Science Forum,2012(Pt.2):1199-1204.
[7] Zhou HT;Zeng XQ;Liu LF;Zhang Y;Zhu YP;Ding WJ .Effect of cerium on microstructures and mechanical properties of AZ61 wrought magnesium alloy[J].Journal of Materials Science,2004(23):7061-7066.
[8] S. F. Liu;B. Li;X. H. Wang;W. Su;H. Han .Refinement effect of cerium, calcium and strontium in AZ91 magnesium alloy[J].Journal of Materials Processing Technology,2009(8):3999-4004.
[9] Anru Wu,Changqing Xia,Jiewen Wang.Distribution, evolution and the effects of rare earths Ce and Y on the mechanical properties of ZK60 alloys[J].北京科技大学学报(英文版),2006(05):424-428.
[10] Effects of cerium on microstructure and mechanical properties of ZK60 alloy[J].中南工业大学学报(英文版),2005(05):515-520.
[11] Y. J. QIN;Q. L. PAN;Y. B. HE;W. B. Li;X. Y. Liu;X. FAN .Artificial Neural Network Modeling to Evaluate and Predict the Deformation Behavior Of ZK60 Magnesium Alloy During Hot Compression[J].Materials and Manufacturing Processes,2010(7/9):539-545.
[12] Lu, Z.;Pan, Q.;Liu, X.;Qin, Y.;He, Y.;Cao, S. .Artificial neural network prediction to the hot compressive deformation behavior of Al-Cu-Mg-Ag heat-resistant aluminum alloy[J].Mechanics research communications,2011(3):192-197.
[13] Yanchun Zhu;Weidong Zeng;Yu Sun;Fei Feng;Yigang Zhou .Artificial neural network approach to predict the flow stress in the isothermal compression of as-cast TC21 titanium alloy[J].Computational Materials Science,2011(5):1785-1790.
[14] E.I.POLIAK;J.J.JONAS .A ONE-PARAMETER APPROACH TO DETERMINING THE CRITICAL CONDITIONS FOR THE INITIATION OF DYNAMIC RECRYSTALLIZATION[J].Acta materialia,1996(1):127-136.
[15] McQueen HJ.;Ryan ND. .Constitutive analysis in hot working[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1-2 Special Issue SI):43-63.
[16] Lin YC;Chen MS;Zhong J .Constitutive modeling for elevated temperature flow behavior of 42CrMo steel[J].Computational Materials Science,2008(3):470-477.
[17] Lin YC;Zhang J;Zhong J .Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel[J].Computational Materials Science,2008(4):752-758.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%