欢迎登录材料期刊网

材料期刊网

高级检索

By combining density-functional theory calculations and aberration-corrected transmission electron microscopy, dislocations in Laves phase (a typical complex intermetallic compound) are shown to slip in an undulating path. During the slip, the dislocation cores jump up and down between a weakly bound plane and an adjacent strongly bound plane for gliding and atomic shuffling, respectively. This is different from the conventional slip process in simple metals, which is continuous within a single plane, as described in the paradigm of the generalized stacking fault energy.

参考文献

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%