欢迎登录材料期刊网

材料期刊网

高级检索

通过光学显微分析、XRD、TEM、EDS、DSC、SEM和压缩试验等方法研究了Co48Ni24+xGa28-x(x=0,2,4,6)高温形状记忆合金的微观组织、相变行为、力学性能及形状记忆性能.结果表明,该合金系室温下是由非调制的四方马氏体相和面心立方的γ相组成的双相合金.随Ni含量增加,γ相的体积分数增加,合金的马氏体相变温度升高,这主要归因于马氏体相电子浓度和尺寸因素的综合影响.γ相显著阻碍了马氏体相晶界面的相对滑动,因此随γ相含量增加,合金的抗压强度和压缩变形率逐渐升高.但γ相降低形状记忆性能,随γ相含量增加,合金的最大形状记忆回复应变从1.7%(x=0)降至0.4%(x=6).

参考文献

[1] Otsuka K,Wayman C M.Shape Memory Materials[M].Cambridge:Cambridge University Press,1998.,1998.
[2] 赵连城,蔡伟,郑玉峰.合金的形状记忆效应与超弹性[M].北京:国防工业出版社,2002.,2002.
[3] 李艳锋,米绪军,尹向前,高宝东.热处理对TiNi形状记忆合金回复稳定性能的影响[J].材料热处理学报,2011(08):11-14.
[4] 刘曼倩,贺志荣.Ti-Ni-V形状记忆合金及其弹簧的相变和形变特性[J].材料热处理学报,2012(01):44-48.
[5] 宋之敏,黄婉霞.SME训练Cu-Zn-Al合金的形状记忆效应研究[J].材料热处理学报,2004(01):23-26.
[6] 李建忱,吕晓霞,蒋青,渠英.铁基形状记忆合金的研究进展与展望[J].功能材料,2000(01):9-11,14.
[7] Yang J H,Wayman C M .On the formation mechanism of Ni5Al3 in NiAl-base alloys:Part Ⅰ.Microstructures[J].Intermetallics,1994(2):111-119.,1994.
[8] Golberg D,Xu Y,Murakami Y,et al .High temperature shape memory effect in Ti50Pd50-xNix (x =10,15,20) alloys[J].Materials Letters,1995,22:241-248.,1995.
[9] Tong Y X,Chen F,Tian B,et al .M icrostructure and martensitic transformation of Ti49Ni51-x Hfx high temperature shape memory alloys[J].Materials Letters,2009,63(21):1869-1871.,2009.
[10] Xu H B .Cu-based high-temperature shape-memory alloys and their thermal stability[J].Materials Science Forum,2002,394
[11] Firstov G S,Humbeeck J V,Koval Y N .High-temperature shape memory alloys:some recent developments[J].Materials Science and Engineering A,2004,378:2-10.,2004.
[12] He Z R,Zhou J E,Furuya Y .Effect of Ta content on martensitic transformation behavior of RuTa ultrahigh temperature shape memory alloys[J].Materials Science and Engineering A,2003,348:36-40.,2003.
[13] Murray S J,Marioni M,Allen S M,et al .6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga[J].Applied Physics letters,2000,77(6):886-888.,2000.
[14] Wuttig M,Li J,Craciunescu C .A new ferromagnetic shape memory alloy system[J].Scripta Materialia,2001,44(10):2393-2397.,2001.
[15] Xu H B,Li Y,Jiang C B .Ni-Mn-Ga high-temperature shape memory alloys[J].Materials Science and Engineering A,2006,438
[16] Xu H B,Ma Y Q,Jiang C B .A high-temperature shape-memory alloy Ni54Mn25Ga21[J].Applied physics letters,2003,82(19):3206-3208.,2003.
[17] Chernenko V A,L' vov V,Pons J,et al .Superelasticity in high-temperature Ni-Mn-Ga alloys[J].Journal of Applied Physics,2003,93(5):2394-2399.,2003.
[18] Ma Y Q,Jiang C B,Feng G,et al .Thermal stability of the Ni54Mn25 Ga21 Heusler alloy with high temperature transformation[J].Scripta Materialia,2003,48(4):365-369.,2003.
[19] Craciunescu C,Kishi Y,Lograsso T A,et al .Martensitic transformation in Co2 NiGa ferromagnetic shape memory alloys[J].Scripta Materialia,2002,47(4):285-288.,2002.
[20] Liu J,Xia M X,Huang Y L,et al .Effect of annealing on the microstructure and martensitic transformation of magnetic shape memory alloys CoNiGa[J].Journal of Alloys and Compounds,2006,417:96-99.,2006.
[21] Chernenko V A,Pons J,Cesari E,et al .Martensitic transformation in a ferromagnetic Co-Ni-Ga single crystal[J].Materials Science and Engineering A,2004,378:357-360.,2004.
[22] Dadda J,Maier H J,Karaman I,et al .Pseudoelasticity at elevated temperatures in【001】oriented Co49 Ni21 Ga30 single crystals under compression[J].Scripta Materialia,2006,55(8):663-666.,2006.
[23] Dogan E,Karaman I,Chumlyakov Y I,et al .Microstructure and martensitic transformation characteristics of CoNiGa high temperature shape memory alloys[J].Acta Materialia,2011,59(3):1168-1183.,2011.
[24] Ma Y Q,Jiang C B,Li Y,et al .Study of Ni50 +xMn25 Ga25-x (x =2-11) as high-tem perature shape-memory alloys[J].Acta Materialia,2007,55(5):1533-1541.,2007.
[25] Li Y,Xin Y,Chai L,et al .M icrostructures and shape memory characteristics of dual-phase Co-Ni-Ga high-temperature shape memory alloys[J].Acta Materialia,2010,58(10):3655-3663.,2010.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%