欢迎登录材料期刊网

材料期刊网

高级检索

利用辉光等离子渗碳技术对Ti-6A1-4V进行了表面强化处理.等离子气体为氩气,渗碳温度和时间分别为950℃和3h,工作压力为30~35 Pa.为了避免传统气体渗碳过程中易于产生氢脆的现象,用固体石墨棒作为碳源.渗碳结束后,分别利用OM、FESEM和XRD对渗碳层做分析,并在坏-块摩擦磨损试验机上对处理和未处理样品进行摩擦磨损对比实验.结果发现,渗碳层深度约为416 μm,其表面碳化物(TiC和V8C7)提高了合金表面的硬度和耐磨性能.

参考文献

[1] Kim T S;Park Y G;Wey M Y .[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2003,361:275.
[2] Moriya A;Li J F;Watanabe R et al.[J].Journal of the Japan Society of Powder and Powder Metallurgy,2004,5 1:255.
[3] Zhecheva A;Sha W;Malinov S;Long A .Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods[J].Surface & Coatings Technology,2005(7):2192-2207.
[4] 张高会,张平则,潘俊德,高原,徐重.钛合金双层辉光离子无碳氮共渗摩擦性能研究[J].稀有金属材料与工程,2005(10):1646-1649.
[5] Yilbas B S;Sahin A Z;Al-Garni A Z et al.[J].Surface and Coatings Technology,1996,80:287.
[6] Tsuji, N;Tanaka, S;Takasugi, T .Effects of combined plasma-carburizing and shot-peening on fatigue and wear properties of Ti-6Al-4V alloy[J].Surface & Coatings Technology,2009(10/11):1400-1405.
[7] Ankem S;Margolin H .[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1986,17:2209.
[8] Muraleedharan T M;Meletis E I .[J].Thin Solid Films,1992,221:104.
[9] WANG Lijie,XING Yazhe,WANG Hongbo,HAO Jianmin.Effect of nitriding-sulfurizing composite treatment on the tribological behavior of titanium alloys[J].稀有金属(英文版),2010(06):604-607.
[10] Kim H M;Kim T S;Suryanarayana C et al.[J].Materials Science and Engineering A,1999,287:59.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%