采用基于密度泛函理论的第一原理赝势平面波方法,计算了Cu合金化前后Mg2Ni相及其氢化物的能量与电子结构.负合金形成热的计算结果表明:Cu合金化Mg2Ni形成Mg2Ni(Ⅱ)"1-xCu(x=1/3)的相结构稳定性最高,两个Cu原子最易占据Ni(Ⅱ)的(0,0.5,0.166 67)与(0.5,0,0.5)位置;进一步对其氢化物的解氢反应热进行计算,发现Cu合金化后,氢化物体系解氢反应热与合金化前相比,明显降低,表明Cu合金化Mg2Ni氢化物的解氢能力增强;电子态密度(DOS)与电子密度的计算结果发现:Mg2Ni(Ⅱ)" 1-xCux(x=1/3)相结构最稳定的主要原因在于:Cu合金化后氢化物在费米能级处的成键电子数N(EF)与其它结构相比最少;而Cu合金化Mg2Ni氢化物解氢能力增强的主要原因在于:Cu合金化削弱了氢化物中Mg-Ni和Ni-H间的成键作用以及相应原子在低能级区成键电子数的减少.
参考文献
[1] | Kohno T.;Kanda M. .EFFECT OF PARTIAL SUBSTITUTION ON HYDROGEN STORAGE PROPERTIES OF MG2NI ALLOY[J].Journal of the Electrochemical Society,1997(7):2384-2388. |
[2] | Woo JH;Lee JH;Lee KS;Jung CB .Electrochemical characteristics of nanocrystalline ZrCr sub 2 and Mg sub 2 Ni type metal hydrides prepared by mechanical alloying[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,1999(0):556-563. |
[3] | Liang G;Huot J;Boily S et al.[J].Journal of Alloys and Compounds,1999,282:286. |
[4] | Zaluski L;Zaluska A;Tessier P et al.[J].Journal of Alloys and Compounds,1995,217:295. |
[5] | Dehouche Z;jiaozandry R;Goyette J et al.[J].Journal of Alloys and Compounds,1999,288:269. |
[6] | Simieic M V;Zdujic M;Dimitrijevic R et al.[J].Journal of Power Sources,2006,158:730. |
[7] | Yang Huabin;Yuan Huatang;Ji Jingtao et al.[J].Journal of Alloys and Compounds,2002,330-332:640. |
[8] | Garcla G N;Abriata J P;Sofo J O .[J].Physical Review B:Condensed Matter,1999,59(18):11746. |
[9] | Takahashi Y;Yukawa H;Morinaga M .[J].Journal of Alloys and Compounds,1996,242:98. |
[10] | Segall MD.;Lindan PJD.;Probert MJ.;Pickard CJ.;Hasnip PJ.;Clark SJ. Payne MC. .First-principles simulation: ideas, illustrations and the CASTEP code[J].Journal of Physics. Condensed Matter,2002(11):2717-2744. |
[11] | Marlo M;Milman V .[J].Physical Review B:Condensed Matter,2000,62:2899. |
[12] | Vanderbilt D .[J].Physical Review B:Condensed Matter,1990,41:7892. |
[13] | Hammer B.;Norskov JK.;Hansen LB. .Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals[J].Physical Review.B.Condensed Matter,1999(11):7413-7421. |
[14] | Franscis G P;Payne M C .[J].Journal of Physics:Condensed Matter,1990,2:4395. |
[15] | Monkhorst H J;Pack J D .[J].Physical Review B:Condensed Matter,1976,13:5188. |
[16] | To Ngok;Tkhai V F;Serebryakov Soy .[J].Non-Ferrous Metal Research,1984,12:161. |
[17] | Song Y;Guo Z X;Yang R et al.[J].Acta Materialia,2001,49(09):1647. |
[18] | Medvedeva M I;Gornostyrev Y N;Novikov D L et al.[J].Acta Materialia,1998,46(10):3433. |
[19] | Sahu BR .Electronic structure and bonding or ultralight LiMg[J].Materials Science & Engineering, B. Solid-State Materials for Advanced Technology,1997(1):74-78. |
[20] | Nakamura H.;Pettifor DG.;Nguyen-Manh D. .Electronic structure and energetics of LaNi5, alpha-La2Ni10H and beta-La2Ni10H14[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,1998(2):81-91. |
[21] | Fu C L;Wang X D;Ye Y Y et al.[J].INTERMETALLICS,1999,7(02):179. |
[22] | Nylen J;Garcia F J;Mosel B D et al.[J].Solid State Sciences,2004,6(01):147. |
[23] | Vakhney A G;Yaresko A N;Antonov V N et al.[J].International Journal of Hydrogen Energy,2001,26(05):453. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%