低频时,控制振动结构第一阶声辐射模态伴随系数可有效控制总声功率。通过分层有限元模型可以求解层合板的位移模式。对层合板的固有频率和动态响应进行了理论推导。结合声辐射模态理论,研究了层合板铺设角度、弹性模量比、跨厚比以及阻尼比等结构参数对层合板结构第一阶声辐射模态伴随系数的影响。计算结果表明,分层理论结合有限元方法可以较准确地计算层合板固有频率,而且铺设角度和跨厚比对层合板结构声辐射模态影响较大。
Controlling the adjoint coefficient of the first order acoustic radiation mode of vibrating structure can reduce efficiently the total sound power at low frequency.The displacement of laminated composite plates can be obtained by using layerwise finite element models.A preliminary study was conducted for the natural frequency and dynamic response of the laminated composite plates.Based on the acoustic radiation mode,the effects of panel orientation angle,elastic modulus ratio,width-depth ratio and damping ratio on the adjoint coefficient of the first order acoustic radiation mode of the laminated composite plates were discussed.The results show that the natural frequency of laminated composite plates can be analyzed accurately by using the layerwise finite element models.The effects of panel orientation angle and width-depth ratio on the adjoint coefficient of the acoustic radiation mode of the laminated composite plates are significant.
参考文献
[1] | Elliott S J, Johnson M E. Radiation modes and the activecontrol of sound power [J]. Journal of the Acoustical Society of America, 1993, 94(4): 2194-2204. |
[2] | 姜哲.声辐射问题中的模态分析I:理论[J].声学学报,2004,29(4):373-378. |
[3] | 李双,陈克安.结构振动模态和声辐射模态之间的对应关系及其应用[J].声学学报,2007,32(2):171-178. |
[4] | Yin X W, Liu L J, Hua H X, et al. Acoustic radiation from a laminated composite plate reinforced by doubly periodic parallel stiffeners [J]. Journal of Sound and Vibration, 2007, 306 (3-5): 877-889. |
[5] | 邹元杰,赵德有.水中阻尼复合箱体结构的振动声辐射特性研究[J].声学学报,2006,31(4):56-63. |
[6] | 黎胜,赵德有.复合材料层合板的铺层几何对结构声传输的影响[J].振动与冲击,2001,20(2):86-88. |
[7] | 杨和振,ParkHan-il,李华军.温度变化下复合材料层合板的试验模态分析[J].复合材料学报,2008,25(2):149-155. |
[8] | Niu B, Olhoff N, Lund E. Discrete material optimization of vibrating laminated composite plates for minimum sound radiation [J]. International Journal of Solids and Structures, 2010, 47(16): 2097-2114. |
[9] | 李鸿顺,钱坤,曹海建,等.整体中空复合材料隔声性能的实验研究[J].复合材料学报,2011,28(4):167-170. |
[10] | Li S, Zhao D Y. Numerical simulation of active control of structural vibration and acoustic radiation of a fluid- loaded laminated plate [J]. Journal of Sound and Vibration, 2004, 272(1/2) : 109-124. |
[11] | Qatu M S, Sullivan R W, Wang W C. Recent research advances on the dynamic analysis of composite shells~ 2000-- 2009 [J]. Composite Structures, 2010, 93(1): 14-31. |
[12] | Ferreira A J M, Roque C M C, Jorge R M N. Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and multiquadrics discretizations [J]. Engineering Analysis with Boundary Elements, 2005, 29(12):1104-1114. |
[13] | Reddy J N. Theories and computational models for composite laminate[J]. Applied Mechanics Reviews, 1994, 47(6) : 147- 169. |
[14] | 吕恩琳.复合材料力学[M].重庆:墓庆大学出版社,1992:31-33. |
[15] | Cupial P, Niziol J. Vibration and damping analysis of a three- layered composite plate with a viscoelastic mid-layer [J]. Journal of Sound and Vibration, 1995, 183(1) : 99-114. |
[16] | 胡明勇,王安稳,章向明.约束阻尼层合板的稳态响应[J].应用力学学报.2010,27(1):214-218. |
[17] | ReddyJ N. Free vibration of antisymmetric angle- ply laminated plates including transverse shear deformation by the finite element method [J]. Journal of Sound and Vibration, 1979, 66(4): 565-576. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%