在纳米结构的金属及合金中,随着晶粒尺寸的下降,晶界体积分数显著增加,使得晶粒长大的驱动力提高,因此纳米金属在加热时(甚至是室温下)是不稳定的,限制了其加工与应用.本文对Trelewicz/Schuh (TS)模型进行了修正,并利用修正的模型对Cu-6.5at% Zr、Cu-6.5at% Nb纳米晶合金的热力学稳定倾向进行了计算研究.实验利用机械合金化的方法制备这两种纳米晶合金,并在不同温度下进行退火.实验结果及理论计算表明,随着溶质原子的加入及在晶界的偏聚,这两种纳米晶合金的晶粒长大得到抑制,热力学稳定性提高.
参考文献
[1] | Gleiter H .Nanostructured materials:Basic concepts and microstructure[J].Acta Materialia,2000,48 |
[2] | Meyers M A .Mishra A,Benson D J.Mechanical properties of nanocrystalline materials[J].Progress in Materials Science,2006,51 |
[3] | Zhao Y H,Liao X Z,Cheng S,et al .Mechanical properties of nanocrystalline materials[J].Advanced Materials,2006,18 |
[4] | Ruslan Valiev .Nanomaterial advantage[J].Nature,2002,419 |
[5] | Carsey J E,Ning J,Milligan W W,et al .A simple,mixtures-based model for the grain size dependence of strength in nanophase metals[J].NanoStructured Materials,1995,5(4):441-448.,1995. |
[6] | Atwater M A.Stabilizing nanocrystalline copper and brass by solute addition[D].Raleigh:North Carolina State University,2012.,2012. |
[7] | Atwater M A,Darling K A.A visual library of stability in binary metallic systems:The stabilization of nanocrystalline grain size by solute addition:Part 1[R].ARL-TR-6007,Aberdeen:U.S.Army Research Laboratory,Aberdeen Proving Ground,2012.,2012. |
[8] | Koch C C,Scattergood R O,Saber M,et al.High temperature stabilization of nanocrystalline grain size:Thermodynamic versus kinetic strategies[J].Materials Research Society,2013.,2013. |
[9] | Weissmuller J .Alloy effects in nanaostructures[J].Nanostructured Materials,1993,3 |
[10] | Weissmuller J .Alloy thermodynamics in nanostructures[J].Materials Research Society,1994,9 |
[11] | Trelewicz J R,Schuh C A .Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys[J].Physical Review B,2009,79(9):094112(1)-094112(13).,2009. |
[12] | Chookajorn T,Murdoch H A,Schuh C A .Supplementary materials for design of stable nanocrystalline alloys[J].Science,2012,337(24):951-954.,2012. |
[13] | Saber M,Kotan H,Koch C C,et al .Thermodynamic stabilization of nanocrystalline binary alloys[J].Journal of applied physics,2013,113 |
[14] | J .Friedel.Electronic structure of primary solid solutions in metals[J].Advanced.Physics,1954,3 |
[15] | Taiji Nishizawa.Thermodynamics of microstructures[M].ASM International,America 2008:121.,2008. |
[16] | Martienssen W,Warlimont H.Springer handbook of condensed matter and materials data[M].Springer Berlin Heidelberg,German:2005.,2005. |
[17] | Pan J S,Tong J M,Tian M B.Foundation of material science[M].Beijing,China:Tsing Hua University Press,1998:330.,1998. |
[18] | Miedema A R,De Boer F R,Boom R .Model predictions for the enthalpy of formation of transition metal alloys[J].Calphad,1977,1(4):341-359.,1977. |
[19] | Seizo Nagasaki,Makoto Hirabayashi.Binary alloy phase-diagrams[M].AGNE Gijutsu Center Co.Ltd.,Japan 2006:135,147.,2006. |
[20] | Wynblatt P,Ku R C,Surface energy and solute strain energy effects in surface segregation[J].Surface Science,1977,65 |
[21] | Rajgarhia R K,Saxena A,Spearot D E,et al .Microstructural stability of copper with antimony dopants at grain boundaries:experiments and molecular dynamics Simulations[J].Material Science,2010,45 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%