为研究TA17近α钛合金在高能喷丸(HESP)过程中的晶粒细化机制,采用高能喷丸对TA17近α钛合金棒材端面进行处理,利用光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射仪对喷丸变形层组织进行表征,按照变形层中不同深度的组织特征对晶粒细化机制进行探讨.结果表明:在喷丸表面形成35 nm左右的等轴纳米晶,在孪晶形成层中粗晶内形成较厚的孪晶薄片,在过渡层中位错滑移使孪晶薄片内生成小角度取向的亚晶,在纳米层中亚晶被转变成随机取向的等轴纳米晶.
参考文献
[1] | GLEITER H .Nanocrystalline materials[J].Progress in Materials Science,1989,33(04):223-315. |
[2] | SCHUMACHER S;BIRRINGER R;STRAUSS R;GLEITER H .Diffusion of silver in nanoerystalline copper between 303 and 373 K[J].Acta Metallurgica,1989,37(09):2485-2488. |
[3] | LU L;SUI M L;LU K .Superplastic extensibility of nanocrystalline copper at room temperature[J].Science,2000,287(02):1463-1466. |
[4] | BIRRINGER R;GLEITER H;KLEIN H P;MARQUARDT P .Nanocrystalline materials an approach to a novel solid structure with gas-like disorder[J].Physics Letters A,1984,102(08):365-369. |
[5] | LU K;WANG J T .Relationship between crystallization temperature and pre-existing nuclei in amorphous Ni-P alloys[J].Materials Science and Engineering,1988,97(01):399-402. |
[6] | ERB U;ELSHERIK A M;PALUMBO G;AUST K T .Synthesis,structure and properties of electroplated nanocrystalline materials[J].Nanostructured Materials,1993,2(04):383-390. |
[7] | VALIEV R Z;KORZNIKOV A V;MULYUKOV R R .Structure and properties of ultrafine-grained materials produced by severe plastic deformation[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1993,168(02):141-148. |
[8] | 卢柯;吕坚 .开成纳米结构的机械方法和专用机械设备[P].CN 01122980.2,200-02-20. |
[9] | TAO N R;WANG Z B;TONG W P;SUI M L LU J LU K .An investigation of surface nanocrystallization mechanism in Fe by surface mechanical attrition treatment[J].Acta Materials,2002,50(18):4603-4616. |
[10] | Wang ZB.;Tao NR.;Li S.;Wang W.;Liu G.;Luc J.;Lu K. .Effect of surface nanocrystallization on friction and wear properties in low carbon steel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):144-149. |
[11] | LIU G;LU J;LU K .Surface nanocrystallization of 316 stainless steel induced by ultrasonic shot peening[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2000,286(01):91-95. |
[12] | TONG W P;TAO N R;WANG Z B;LU J LU K .Nitriding iron at lower temperatures[J].Science,2003,299(01):686-688. |
[13] | Z. B. Wang;N. R. Tao;W. P. Tong;J. Lu;K. Lu .Diffusion of chromium in nanocrystalline iron produced by means of surface mechanical attrition treatment[J].Acta materialia,2003(14):4319-4329. |
[14] | Z.B. Wang;J. Lu;K. Lu .Chromizing behaviors of a low carbon steel processed by means of surface mechanical attrition treatment[J].Acta materialia,2005(7):2081-2089. |
[15] | 佟伟平,陶乃镕,王镇波,吕坚,卢柯.具有纳米结构表层的纯铁和38CrMoAl钢的渗氮[J].中国科学院研究生院学报,2005(02):230-238. |
[16] | ZHANG H W;WANG L;HEI Z K;LIU G LU J LU K .Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer[J].ZEITSCHRIFT FUR METALLKUNDE,2003,94(05):1143-1147. |
[17] | Duohui BEI,Jianfeng GU,Jiansheng Pan,Jian (LU),Ke LU.Gaseous Nitriding Process of Surface Nanocrystallized (SNCed) Steel[J].材料科学技术学报(英文版),2002(06):566-568. |
[18] | K. Lu;J. Lu .Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(0):38-45. |
[19] | Wu X;Tao N;Hong Y;Liu G;Xu B;Lu J;Lu K .Strain-induced grain refinement of cobalt during surface mechanical attrition treatment[J].Acta materialia,2005(3):681-691. |
[20] | K.Y. Zhu;A. Vassel;F. Brisset .Nanostructure formation mechanism of alpha-titanium using SMAT[J].Acta materialia,2004(14):4101-4110. |
[21] | H.Q. Sun;Y.-N. Shi;M.-X. Zhang .Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy[J].Acta materialia,2007(3):975-982. |
[22] | D.R.Chichili;K.T.Ramesh;K.J.Hemker .The high-strain-rate response of alpha- titanium: experiments, deformation mechanisms and modeling[J].Acta materialia,1998(3):1025-1043. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%