欢迎登录材料期刊网

材料期刊网

高级检索

采用气体保护法制备Mg-8Gd-3Y-0.5Zr(GW83K)合金,并冷模压铸成拉伸试样.通过光学显微镜、扫描电镜观察及力学性能测试等分析合金压铸态和不同热处理状态下的显微组织及力学性能.结果表明:冷模压铸GW83K合金经热处理后,其力学性能较压铸态均有所提高,尤其是经低温短时固溶处理(T4)后的合金,其晶粒度变化不大,组织比较均匀,片层状的共晶体消失,第二相以不连续的棒状或粒状分布于晶界处.GW83K-T4合金的室温拉伸性能可达到σ_b=261.7 MPa,σ_s=240.8 MPa,δ_5=6.0%,比压铸态合金分别提高了21%,28.4%和30.4%,且该合金具有较好高温力学性能.

Mg-8Gd-3Y-0.5Zr(GW83K) alloys were prepared by means of the atmosphere protection method and then chamber die cast into tensile samples with cold mould. The microstructures and mechanical properties of alloys in die-cast state and different heat treatment states were investigated by optical microscopy, scanning electron microscopy and mechanical property testing. The results show that the mechanical properties of the cold-mould die-cast GW83K alloys after heat treatment are improved. In particular, the die-cast GW83K alloy after short-time low-temperature solid solution treatment (T4) has a little variation in grain size and more uniform microstructure, lamellar eutectic disappears and the second phases distribute in the grain boundary in discontinuous rod shape or granule shape. Due to microstructure improvement of GW83K-T4 alloy, the mechanical properties of the alloy at room temperature are improved such as: σ_b=261.7 MPa,σ_s=240.8 MPa and δ_s=6.0%, which are increased by 21%, 28.4% and 30.4% compared with those of die-cast GW83K alloy respectively, and GW83K-T4 alloy has better elevated temperature mechanical properties.

参考文献

[1] Mordike BL. .Creep-resistant magnesium alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1-2 Special Issue SI):103-112.
[2] Maruyama K;Suzuki M;Sato H .[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2002,A33(03):875.
[3] Negishi Y;Nishimura T;lwasawa S et al.[J].Light Metals,1994,44(10):555.
[4] Anyanwu I A;Kamado S;Kojima Y .[J].Materials Transactions,2001,42(07):1206.
[5] Kawabata T;Matsuda K;Kamado S et al.[J].Materials Science Forum,2003,419-422:303.
[6] 郭永春;刘涛;李建平 et al.[J].西安理工大学学报,2007,27(03):242.
[7] Taniike S;Kitaquchi Y et al.[J].Keikinzoku/Journal of Japan Institute of Light Metals,1997,47(05):261.
[8] Thaddeus B M.Binary Alloy Phase Diagrams[M].Ohio:American Society for Metals,1987
[9] Eliezer D;Aghion E;Froes F H .[J].Advanced Performance Materials,1998,5:201.
[10] 刘正,王越,王中光,李锋,申志勇.镁基轻质材料的研究与应用[J].材料研究学报,2000(05):449-456.
[11] 谭敦强;黎文献;李松瑞.[J].特种铸造及有色合金,2001(01):41.
[12] 邹宏辉,曾小勤,翟春泉,丁文江.镁合金的强韧化进展[J].机械工程材料,2004(05):1-3,16.
[13] 李锋,林立,童晓旻,刘正,陈立佳.镁合金及其复合材料超塑性的研究现状[J].铸造,2003(07):455-461.
[14] Han B Q;Dunand D C.[J].Materials Science and Engineering A,2000(277):297.
[15] Maeng D Y;Kim T S;Lee J H et al.[J].Scripta Materialia,2000,43:385.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%