欢迎登录材料期刊网

材料期刊网

高级检索

采用基于密度泛函理论框架下的第一性原理方法,结合广义梯度近似研究了Cu掺杂β-Ga2O3系统的磁学特性.计算结果表明,单Cu的掺杂,稳定体系倾向于自旋极化态,且Cu替代八面体的Ga(B)时系统更稳定,容易在实验上形成;Cu掺杂β-Ga2O3呈现出半金属特性,Cu的掺杂引入了2.0μB磁矩,其中局域在Cu原子上的磁矩为0.45μB,其余主要来自于Cu杂质周围的氧原子.由于电荷补偿效应,在Cu掺杂β-Ga2O3系统中引入氧空位时,体系磁矩减小到零.在2个Cu取代Ga的10种构型中,A1-B3构型的能量最低,且显示出铁磁性,磁矩为3.8μB.考虑氧空位后,A1-B3构型的反铁磁性和铁磁性能量差增大,磁矩减小到1.0μB.

参考文献

[1] Raebiger H,Nakayama H,Fujita T .Control of defect binding and magnetic interaction energies in dilute magnetic semiconductors by charge state manipulation[J].J Appl Phys,2014,115(1):012008,2014.
[2] YangXJ,LiYK,ShenCY,et al .SrandMnco-doped LaCuSO:A wide band gap oxide diluted magnetic semiconductor with Tc around 200 K[J].Appl Phys Lett,2013,103(2):022410,2013.
[3] Saito H,Zayets V,Yamagata S,et al .Room-temperature ferromagnetism in a Ⅱ-Ⅵ diluted magnetic semiconductor Zn1-xCrxTe[J].Phys Rev Lett,2003,90(20):207202,2003.
[4] Singh R K,Wu S Y,Liu H X,et al .The role of Cr substitution on the ferromagnetic properties of Ga1-x CrxN[J].Appl Phys Lett,2005,86(1):012504,2005.
[5] Pereira L M C,Araújo J P,et al .Searching for room temperature ferromagnetism in transition metal implanted ZnO and GaN[J].J Appl Phys,2013,113(2):023903,2013.
[6] Chen G,Peng J J,Song C,et al .Interplay between chemical state,electric properties,and ferromagnetism in Fedoped ZnO films[J].J Appl Phys,2013,113(10):104503,2013.
[7] Bryan J D,Heald S M,et al .Strong room-temperature ferromagnetism in Co2+ doped TiO2 made from colloidal nanocrystals[J].J Am Chem Soc,2004,126(37):11640,2004.
[8] Zhang K C,Li Y F,Liu Y,et al .Density-functional study on the ferromagnetism of Mn-doped SnO2[J].J Appl Phys,2013,114(13):133707,2013.
[9] Luan H X,Zhang C W,Li F,et al .Design of ferromagnetism in Co-doped SnO2 nanosheets:A first-principles study[J].RSC Adv,2014,4(19):9602,2014.
[10] Wu K P,Gu S L,Zhu S M .Research on ferromagnetism stabilization and electrinic structure of (Mn,N)-codoped ZnO by first principle[J].Mater Rev:Res,2013,27(6):144 吴孔平,顾书林,朱顺明.Mn与N共掺ZnO铁磁稳定性及其电子结构的第一性原理研究[J].材料导报:研究篇,2013,27(6):144,2013.
[11] Dietl T .Origin and control of ferromagnetism in dilute magnetic semiconductors and oxides (invited)[J].J Appl Phys,2008,103(7):07D11 1,2008.
[12] Shen L,Wu R Q,Pan H,et al .Mechanism of ferromagnetism in nitrogen-doped ZnO:First-principle calculations[J].Phys Rev B,2008,78(7):073306,2008.
[13] Long R,English N J .Magnetic properties of first-row element-doped ZnS semiconductors:A density functional theory investigation[J].Phys Rev B,2009,80(11):115212,2009.
[14] Huang X H,Zhang C,Tay C B,et al .Green luminescence from Cu-doped ZnO nanorods:Role of Zn vacancies and negative thermal quenching[J].Appl Phys Lett,2013,102(11):111106,2013.
[15] Lee D J,Kim K J,Kim S H,et al .Atomic layer deposition of Ti-doped ZnO films with enhanced electron mobility[J].J Mater Chem C,2013,1(31):4761,2013.
[16] Tang J P,Wang L L,Xiao W Z,et al .First principles study on magnetic properties in ZnS doped with palladium[J].Eur Phys J B,2013,86(8):362,2013.
[17] Dong X L,Li Q H,Xu M X .Magnetic properties in Pd doped ZnS from ab initio calculations[J].Eur Phys J B,2013,86(11):465,2013.
[18] Al-Rasoul K T,Abbas N K,Shanan Z J .Structural and optical characterization of Cu and Ni doped ZnS nanoparticles[J].Int J Electrochem Sci,2013,8(4):5594,2013.
[19] Sato K,Dederichs P H,et al .Curie temperatures of Ⅲ-Ⅴ diluted magnetic semiconductors calculated from first principles[J].Eur Phys Lett,2003,61(3):403,2003.
[20] Dietl T .Ferromagnetic semiconductors[J].Semicond Sci Techn,2002,17(4):377,2002.
[21] Hayashi H,Huang R,Oba F,et al .Epitaxial growth of Mn-doped γ-Ga2O3 on spinel substrate[J].J Mater Res,2011,26(4):578,2011.
[22] Mentink-Vigier F,Binet L,Gourier D,et al .Origin of the decoherence of the extended electron spin state in Ti-doped β-Ga2O3[J].J Phys:Condens Matter,2013,25(31):316002,2013.
[23] Yan H Y,Guo Y R,Song Q S,et al .First-principles study on electronic structure and optical properties of Cu-doped β-Ga2 O3[J].Physica B:Condensed Matter,2014,434(1):181,2014.
[24] Wang X,Shen S,et al .Effects of Zn2+ and Pb2+ dopants on the activity of Ga2 O3-based photocatalysts for water splitting[J].Phys Chem Chem Phys,2013,15(44):19380,2013.
[25] Geller S .Crystal structure of β-Ga2O3[J].Chem Phys,1960,33(3):676,1960.
[26] Segall M D,Lindan P J D,Probert M J,et al .First-principles simulation:Ideas,illustrations and the CASTEP code[J].J Physica,2002,14(11):2717,2002.
[27] Perdew J P,Burke K,Ernzerhof M .Generalized gradient approximation made simple[J].Phys Rev Lett,1996,77(18):3865,1996.
[28] Vanderbilt D .Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J].Phys Rev B,1990,41(11):7892,1990.
[29] Fischer T H,Alml(O)f J .Fischer T H,Alml(O)f J.General methods for geometry and wave function optimization[J].J Phys Chem,1992,96(24):9768,1992.
[30] Zhang Y J,Yan J L,Li Q S,et al .Optial and structural properties of Cu-doped β-Ga2 O3 films[J].Mater Sci Eng B,2011,176(11):846,2011.
[31] Bergqvist L,Erisksson O,Kudrnovsky J,et al .Magnetic percolation in diluted magnetic semiconductors[J].Phys Rev Lett,2004,93(13):137202,2004.
[32] Sato K,Schweika W,Dederichs P H,et al .Low-temperature ferromagnetism in (Ga,Mn)N:Ab initio calculations[J].Phys Rev B,2004,70(20):201202,2004.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%