欢迎登录材料期刊网

材料期刊网

高级检索

以共沉淀法制备的纳米(75mol%Bi2O3+25mol%Y2O3)混合粉体作为原料,通过无 压反应烧结工艺制备了纳米Bi2O3-Y2O3快离子导体.对烧结过程中高导电相(纳米δ-Bi2O3) 的形成规律研究表明:固溶反应发生在烧结过程的初期,在烧结过程中晶粒生长规律符合 (D-D0)2=K·t抛物线方程.用模式识别技术对δ-Bi2O3相生成的工艺条件进行优化的工艺 参数优化区为:Y>-1.846X+3.433(X=0.0059T+0.0101t,Y=-0.0059T+0.0101t,式中, T为烧结温度,t为烧结时间).在T=600℃,t=2h无压反应烧结条件下,纳米晶Bi2O3-Y2O3 快离子导体材料的相对密度可达96%以上,并且微观结构致密均匀,很少有残留气孔和裂纹, 平均晶粒尺寸在100nm以下.

With nanometer (75mol%Bi2O3+25mol%Y2O3) powder prepared by coprecipitation as raw material, the nanocrystalline Bi2O3-Y2O3 fast ionic conductor was fabricated through
pressureless reactive sintering technique. The study results on formation law of highly conductive phase (nano δ -Bi2O3) in the sintering process show that the solid solution reaction
happens at the early stage of sintering process, and the grain growth accords with the rule of para-curve equation (D-D0)2=K·t. The optimizing domain of sintering technique parameters forming
δ -Bi2O3 was optimized by the pattern recognition technique, that is Y>-1.846X+3.433 (X=0.0059T+0.0101t, Y=-0.0059T+0.0101t, where T is sintering temperature, t is sintering time).
At the pressureless reactive sintering conditions of T=600℃, t=2h, the nanocrystalline Bi2O3-Y2O3 fast ionic conductor can reach to a relative density of higher than 96%,
and its microstructure is compact and homogeneous with few remaining pores or cracks, its average grain size is less than 100nm.

参考文献

[1] Kruidhof H, Seshan K, Lippens Jr B C, et al. Materials Research Bulletin, 1987, 22: 1635--1643.
[2] Bhattacharya A K, Mallick K K. Solid State Communications, 1994, 91 (5): 357--360.
[3] Teruyoshi Hirano,Tatsuru Namikawa. IEEE.Transcations on Megnetics, 1999, 35 (5): 3487--3489.
[4] 孙璐薇, 何永, 付云德等. 传感技术, 2000, 19 (1): 21--27.
[5] Joshi P C, Krupanidi S B. Journal of Applied Physics, 1992, 72 (12): 5827--5833.
[6] 陈代荣, 谢经雷, 李博, 等. 山东大学学报, 1997, 32 (1): 88--93.
[7] ZENG Y, LIN Y S. Journal of Materials Science, 2001, 36: 1271--1276.
[8] 陈世柱, 尹志民. 材料科学与工程, 1998, 16 (3): 60--63.
[9] 李清文, 李娟, 夏熙等. 化学学报, 1999, 57 (5): 491--495.
[10] MAYO M. International Materials Reviews, 1996, 41 (3): 85--115.
[11]李蔚, 高濂, 李强, 等(LI Wei, et al). 硅酸盐学报(Journal of the Chinese Ceramic Society), 2001, 29 (1): 84--88.
[12] Hans T Larker, Robert L. Journal of the European Ceramic Society, 1999, 19: 2367--2373.
[13] Nishimura T, Mitomo M, Hirotsuru H, et al. Journal of Materials Science Letters, 1995, 14 (15): 1046--1051.
[14] 张劲松, 杨永进, 曹丽华, 等. 材料研究学报, 1999, 13 (6): 587--590.
[15] Kingery W D, Bowen H K, Uhlman D R. Introduction to Ceramics, 2nd Edited, by John Wiley and Sons Inc., 1967. 458--460.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%