采用人工神经网络研究了在不同型温、 浇温和转速条件下以离心法制备Al-16%Si FGM时初晶硅的分布规律, 并通过实验进行了验证。 在建立神经网络模型时, 以型温、 浇温、 转速等工艺参数作为人工神经网络的输入, 以内生初晶硅分布的相对厚度作为输出。 实验表明, 预测结果与实际测定结果比较吻合, 说明采用神经网络预测离心法制备梯度功能材料中内生颗粒的分布是可行的。
Artificial neural network has been applied to acquire the constitutive relationships of endogenetic particle distribution in FGM prepared by centrifugal casting at different mould temperature, pouring temperature and rotating speed. Building up the neural network model of the constitutive relationship for the alloy, mould temperature, pouring temperature and rotating speed are taken as the inputs and relative thickness of endogenetic particle distribution in FGM is taken as the output. At the same time, four layers are constructed, six neurons are used in the first hidden layer and four neurons are used in the second hidden layer. The activation function in the output layer of the model obeys a linear function, while the activation function in the hidden layer is a sigmoid function. Comparison of the predicted and experimental results shows that the neural network model used to predict the constitutive relationship of the endogenetic particle distribution in FGM has good learning precision and good generalization. It's available to forecast endogenetic particle distribution in FGM prepared by centrifugal casting based on artificial neural network.
参考文献
[1] | 张新平;于思荣;何镇明.离心铸造梯度功能材料的研究现状及展望[J].Foundry(铸造),1999(05):47-50. |
[2] | 张宝生 .离心铸造粒子强化铝基功能梯度材料制备及性能[D].哈尔滨工业大学,1996. |
[3] | Lajoye L;Suery M.Modeling of particle segregation during centrifugal casting of Al-matrix composites[J].ASM International Materials Park OH,1988:15-20. |
[4] | 张新平 .离心铸造制备FGM中颗粒相的分布行为[D].吉林工业大学,2000. |
[5] | 于思荣 .表面复合强化铝合金新材料及其仿生分析[D].吉林工业大学,1998. |
[6] | 金属液体凝固中直接挤压工艺的神经网络[J].中国有色金属学报,1999(03):586. |
[7] | Ti-17合金本构关系的人工神经网络模型[J].中国有色金属学报,1999(03):590. |
[8] | 张立明.人工神经网络的模型及应用[M].上海:复旦大学出版社,1993 |
[9] | 焦李成.System Theory of Artificial Neural Networks(神经网络系统理论)[M].西安:西安电子科技大学出版社,1990 |
[10] | NAGAI M;Ueda E;Motan A .Nonlinear design approach to four-wheel-steering system using neural networks[J].Vehicle System Dynamics,1995,24:329-324. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%